
International Journal on Advances in ICT for Emerging Regions 2024 17 (1):

	

March 2024 International Journal on Advances in ICT for Emerging Regions

An Evaluation of Multipath TCP with Highly

Asymmetric Subflows
J.R.M.D.B. Karunarathnea, Tharindu Wijethilakea, C. Keppitiyagamaa

aUniversity of Colombo School of Computing, 35 Reid Ave, Colombo 00700, Sri Lanka

Abstract— Multipath TCP (MPTCP) is an extension of the

Transmission Control Protocol (TCP) that allows the

simultaneous use of multiple available network interfaces to

transmit and receive data. MPTCP can improve the throughput,

lower the latency, and provide higher resilience to network

failures. MPTCP creates a number of network connections

(subflows) between the destination and presents a single

endpoint to the application. MPTCP schedulers multiplexe data

over subflows based on their end-to-end path metrics. In this

study, we found that the presence of asymmetric links within an

MPTCP connection can lead to suboptimal performance. We

explored the architecture of the Linux implementation of

MPTCP and identified the design choices that lead MPTCP to

underperform in the presence of highly asymmetric links. To

test the behaviour of MPTCP an emulation testbed was built

using the Mininet emulator. We conducted comprehensive

experiments in this controlled environment to analyze MPTCP

behavior under asymmetric subflows in terms of bandwidth and

latency. We designed a novel scheduling algorithm tailored to

mitigate the impact of asymmetric subflows and implemented it

in the Linux kernel. Building a scheduling algorithm for

MPTCP in the Linux kernel is not a straightforward task.

Several iterations of the algorithm had to be investigated in

order to develop a practically deployable algorithm. The

proposed algorithms were implemented in the Linux Kernel and

were tested in the testbed. These algorithms were tested for their

suitability to be used over highly asymmetric links under several

test scenarios. Finally, we proposed the “Extended Dynamic

Scheduler Algorithm” which observes the MPTCP connection

and adjusts its subflows to limit the effect of asymmetric

subflows in the MPTCP connection. The algorithm also has its

own kickback policy where the throughput of the connection

starts to improve when the asymmetry of the subflows

decreases.

Keywords— Multipath TCP, Asymmetric Subflows

I. INTRODUCTION

he Internet has become one of the basic necessities in the

21st century. Most modern smart devices including the

refrigerator in the kitchen should connect to the internet to

work at its full capacity. There is an estimated amount of 43

billion devices connected to the internet as of 2023[1]. Most

devices connecting to the internet like smartphones and

computers have more than one network interface which is

capable of connecting to the internet (Multihomed devices).

Correspondence: J.R.M.D.B. Karunarathne (e-mail: dinendradb@gmail.com)
Received: 04-03-2024 Revised: 10-03-2024 Accepted: 20-03-2024

J.R.M.D.B. Karunarathne, Tharindu Wijethilake amd C. Keppitiyagama are
from University of Colombo School of Computing, Sri Lanka

(dinendradb@gmail.com, tnb@ucsc.cmb.ac.lk, cik@ucsc.cmb.ac.lk)

DOI:

For example, a modern smartphone has the hardware

capability of connecting to the internet via WiFi or a mobile

network. But the interesting fact is 91.5% of the monitored

links on the internet are working on the Transmission Control

Protocol (TCP) which was introduced in the 1970s[2]. But

TCP is not capable of handling multiple network interfaces

simultaneously. Due to this limitation of TCP, readily

available hardware resources are not used to their maximum

capability in multihomed devices. This issue is called the

Multi-homed problem and it has become an interesting

avenue for researchers to explore.

There are a number of mechanisms proposed as solutions

for the multihomed problem at the application layer, network

layer and transport layer. To solve the multihomed problem

in the Application Layer, all the existing applications should

be improved to handle multiple network interfaces

simultaneously. This solution was deemed impractical with

the growing number of applications and different kinds of

devices with a different number of network interfaces.

Several network-level solutions were proposed like shim6[3]

and HIP (Host Identity Protocol)[4]. These solutions remain

experimental and have not been deployed in a commercial

environment. Stream Control Transmission (SCTP)[5] is a

promising transport layer solution that allows hosts to use

multiple paths at the same time. SCTP is implemented in

several operating systems. SCTP is not widely used due to

two major reasons. The applications working on SCTP

needed to be modified to work with SCTP and the

middleboxes such as the firewalls which do not understand

the SCTP protocol started to drop the SCTP packets.

Out of all these available solutions, Multipath

Transmission Control Protocol (MPTCP) has been a

prominent Transport Layer solution. MPTCP is an extension

to the current TCP, which was standardized by the Internet

Engineering Task Force (IETF) and is presented in RFC

8684[6]. MPTCP enables the simultaneous use of several

network interfaces to transmit and receive data. Some

organizations such as Apple have taken the initiative to use

MPTCP in their voice assistance application, Siri[7] and

some Samsung Mobile devices[8]. MPTCP is included in

some latest versions of Linux operating systems and is also

deployed in several systems such as FreeBSD, several

MacOS versions, and in the Google Cloud Engine, Amazon

AWS, Raspberry Pi and Android[9]. However, in this paper,

we will solely focus our study on the Linux implementation

of MPTCP.

An MPTCP connection could consist of one or more than

one network links by using the network interfaces available

in the devices. These individual links are known as subflows.

As an example, consider a connection with two subflows, one

subflow can be a Wifi link and the other, a wired link. Both

these links may have different network characteristics such as

bandwidth, throughput, latency, bandwidth-delay product and

T

https://doi.org/10.4038/icter.v17i1.7278

https://creativecommons.org/licenses/by/4.0/

57 J.R.M.D.B. Karunarathne, Tharindu Wijethilake, Chamath Keppitiyagama

International Journal on Advances in ICT for Emerging Regions March 2024

jitter[10]. The performance of a network may depend on the

mentioned network characteristics.

Asymmetry of subflows will occur when one link

outperforms another drastically in terms of the network

characteristics mentioned above. In this paper, we will

evaluate the behaviour of an MPTCP connection in the

presence of highly asymmetric links in terms of bandwidth

and latency in the Linux implementation of MPTCP.

The paper is organized as follows. We will discuss the

MPTCP protocol and the Architecture of MPTCP in the

Linux Kernel along with the schedulers. Next, we discuss

some design choices of MPTCP in the Linux Kernel which

may lead to MPTCP underperforming the presence of highly

asymmetric links. In the following sections, we discuss the

test bed that we have developed and then we present the

results of our experimental evaluation in different scenarios

to show the effect of the design decisions discussed. Further,

we discuss how we have developed the ”Extended Dynamic

Scheduling Algorithm” and present the evaluation of the

implementation of the algorithm. Then we have presented our

Conclusions and Future Work in the final section.

II. MPTCP

The use of multiple network interfaces in MPTCP

improves throughput and resilience to network failure over

traditional TCP[11]. Though it creates a number of subflows

using the available network interfaces, it appears as a single

network connection to the application. However, each

subflow is treated as a separate TCP connection at the

transport layer, as shown in Figure 1. This enables MPTCP to

mitigate the problems that occur at the middleboxes such as

routers[11]. They will observe the connection as a normal

TCP connection, therefore, the packets will not be dropped.

Applications need not be modified because an MPTCP

connection appears as a single network connection to the

application. These design choices have made MPTCP

popular over the other solutions to the Multihomed problem.

Since each subflow acts as a separate TCP connection, an

MPTCP connec tion is established similarly to a TCP

connection using a 3-way handshake. But MPTCP has its

own set of Option subtypes such as MP CAPABLE, MP

JOIN, ADD ADDR, MP FAIL, and DSS used in connection

and subflow management.

Figure 1: Traditional TCP and MPTCP Stack

Each SYN, SYNACK and ACK packet used in the

handshake will contain the MP CAPABLE option and the

sender’s and the receiver’s key to be used in the subflow

creation as shown in Figure 2.

If any packet received did not contain the MP CAPABLE

option it means that either a host or a middlebox is not

compatible with MPTCP and the connection will fall back to

regular TCP.

Figure 2: Traditional TCP and MPTCP Stack

After an MPTCP connection is initiated, hosts can create

additional subflows by advertising its other network interface

addresses with the ADD ADDR option. Similar to the

connection initiation, subflow initiation is again done by

sharing the connection initiation messages SYN, SYNACK

and ACK but this time with the MP JOIN option. Hosts also

exchange a nonce and a Hashed Message Authentication

(HMAC) code to authenticate the new subflow.

III. MPTCP ARCHITECTURE IN THE LINUX KERNEL

Since this paper focuses on the Linux implementation of

MPTCP, we will survey the MPTCP architecture in the Linux

Kernel. The current implementation of MPTCP in the Linux

Kernel is based on the works of Barre et al.[9],[11]. In this

implementation, the architecture consists of three main parts:

the master subsocket, the Multipath Control Block (mpcb)

and the slave subsocket as depicted in the Figure 3.

The multipath control block (mpcb) supervises the

subflows in a connection. It is responsible for running the

three decisive algorithms for MPTCP. They are the decision

algorithm, the scheduling algorithm and the reordering

algorithm. The decision algorithm starts and stops subflows.

The scheduling algorithm feeds data from the application

layer to a subflow and the reordering algorithm will reorder

the incoming data segments before sending them to the

application layer.

The master subsocket is the interface between the

application and the kernel which is used for TCP

communication. If an MPTCP connection cannot be

established, only the master subsocket will be used in

communication.

The slave subsockets are opened, closed and managed by

the mpcb. When the slave subsockets open, it will create a

pool of paths with the master subsocket. mpcb will schedule

outgoing data segments and receive incoming data segments

in the created pool of subsockets. The pool of subsockets is

not visible to the application layer.

Figure 3: Overview of the main components of the implementation of

Multipath TCP in the Linux Kernel

An Evaluation of Multipath TCP with Highly Asymmetric Subflows 58

March 2024 International Journal on Advances in ICT for Emerging Regions

When multiple subflows are created, MPTCP must decide

on which subflow it should send the data to. Data packets in

the sender queue will be scheduled to the available subflows

by the scheduler as shown in the Figure 4. This decision is

made by the MPTCP scheduler. The scheduler directly

affects the performance of the MPTCP connection as it is

responsible for deciding how to distribute the data over the

multiple paths available in the connection. A wrong

scheduling decision or an irrelevant scheduling algorithm will

affect the performance of an MPTCP connection[12].

Figure 4: Overview of the main components of the implementation of

Multipath TCP in the Linux Kernel

In the current MPTCP implementation, there are three

schedulers[11]. They are minRTT scheduler, the round-robin

scheduler and the redundant scheduler. The minRTT which is

the default scheduler will send packets on the subflow which

has the lowest RTT (Round Trip Time). The round-robin

scheduler schedules packets on each subflow in a round-robin

manner. The redundant scheduler will send the data packets

on all subflows. This is done in extreme cases of packet loss

to provide better robustness.

IV. PERFORMANCE OF MPTCP WITH HIGHLY ASYMMETRIC

LINKS

The performance of a network is the measure of the quality

of service of the network as seen by the users of the network.

It can be measured using several characteristics of the

network such as bandwidth, throughput, latency, jitter, packet

loss rate and bandwidth-delay product. Depending on one or

more characteristics mentioned above, one network

connection can have a better performance than another

network connection. From this point onwards when a

network connection is referred to as a “good path” relative to

another path, it means that the “good path” will have better

performance than the other path. The path with the inferior

performance will be addressed as the “bad path.”

There are three main aims of MPTCP[13]. The first goal of

MPTCP is to use MPTCP without modifying the application.

The second goal is for MPTCP to work in all scenarios where

TCP currently works. In this paper, we will focus on the third

goal which states that MPTCP should perform at least as well

as regular TCP.

There are several design decisions in the Linux

implementation of MPTCP which influence an MPTCP

connection with high asymmetric subflows to not have the

expected performance. In this section, we will discuss these

design decisions.

A. Ack Clocked Situation.

When transferring a data segment over an MPTCP

connection, once the application fills the congestion window

of each subflossw the scheduling algorithm changes. For an

instance, let’s assume that the minRTT scheduler is in

practice and the scheduler prioritizes the subflow with the

minimum RTT to send data. Once the congestion window of

each path is filled, the scheduler will not prioritize the path

with the minimum RTT. As soon as an acknowledgement is

received in any individual subflow, the next packet will be

scheduled to that subflow irrespective of the RTT. This effect

is known as ack-clocked[12].

All the MPTCP schedulers implemented in the Linux

Kernel become ack-clocked once each subflow’s congestion

window is filled in an MPTCP connection[12]. The MPTCP

scheduler may schedule packets to all the paths in the

MPTCP connection including the bad path. Therefore, it is

evident that the presence of a bad path may have an effect on

the MPTCP connection as there is a chance that packets

could be sent via the bad path as well.

B. Granualtity of Allocations.

The MPTCP scheduler must decide the number of

contiguous bytes which will be sent in a single subflow

before switching to another subflow. This is the granularity

of allocations[12]. For the optimal use of all subflows, the

granularity must be of small allocation units. But to send

smaller allocation units it would require more scheduler calls,

more memory access and more CPU usage. Barre et al.[11] in

their implementation of MPTCP in the Linux kernel state that

this design of MPTCP would influence the performance of

MPTCP in the presence of high bandwidth flows.

C. Maximum Segment Size (MSS).

The maximum segment size is a TCP option that defines

the largest amount of data measured in bytes that will travel

across a communication channel. With the use of multiple

paths in MPTCP, the scheduler must decide on an MSS for

each path. But deciding the MSS each time a packet is

scheduled to a path is computationally inefficient. Therefore,

in the current implementation of MPTCP in the Linux Kernel,

the lowest MSS of all paths is used as the MSS of the

MPTCP connection. This can affect the performance of

MPTCP when using highly asymmetric bandwidth links[11].

D. Receiver Buffer/Queue Constraints.

Data segments at the receiving end are collected at a

receiver buffer. Since an MPTCP connection will have

several TCP subflows, each subflow will have an individual

receiver buffer of its own. But in the Linux implementation

of MPTCP, a connection level receiver buffer is maintained

which is a connection-level buffer (Reciever Queue)[11] as

shown in Figure 5. As soon as a packet is received at an

individual subflow buffer, the said packet is pushed to the

connection level receiver buffer and the individual subflows

are emptied. These phenomena will create the following

problems.

59 J.R.M.D.B. Karunarathne, Tharindu Wijethilake, Chamath Keppitiyagama

International Journal on Advances in ICT for Emerging Regions March 2024

Figure 5: The receiver buffer/queue with the subflow level queues of

Multipath TCP in the Linux Kernel.

has two paths, a faster path and a slower path. The faster

keeps on sending data packets and they will be held in the

receiver queue waiting for the data packets which are on the

way in the slower path. The faster path can be blocked due to

the receiver buffer being full since MPTCP has to reorder and

process the data packets which are being received from the

slower path. This phenomenon is called Head-of-Line

Blocking[12].

1) Receive-Window Limitations

In a traditional TCP connection, the receiver queue

becomes full only if the application stops consuming data.

But the receiver queue of an MPTCP connection can be filled

due to Head-of-Line Blocking. Due to the Headof-Line

blocking problem, it is evident that a significant amount of

memory has to be allocated to the receiver buffer to maintain

the performance of an MPTCP connection. Paasch et al.[12]

in their work have identified the optimum amount of the

receiver buffer size as follows,

 n

Buffer =
X

bwi ∗ RTTmax ∗ 2

 i=1

Where bw is the bandwidth of each subflow and RTTmax is

the highest round-trip time among all the subflows. In a

practical scenario, most hosts will not have the capability to

allocate this amount of memory. Therefore, out-of-order

packets will be dropped and will have to be retransmitted

again. Baidya et al.[14] in their work have experimented with

an MPTCP connection with two subflows each with a

bandwidth of 100Mpbs where an interference was introduced

to one subflow. They found that In order for the MPTCP

connection to match the performance of a single-path TCP

connection with a bandwidth of 100Mpbs, a receiver buffer

size of 18MB was required.

Therefore, it is evident that the Linux Implementation of

MPTCP was not designed in a way to handle the presence of

highly asymmetric paths in the MPTCP connection. In the

following sections, we will experimentally evaluate how an

MPTCP connection with highly asymmetric links performs.

V. EVALUATION

E. Experimental Setup

In this paper, we focus on the behaviour of Linux

implementation of MPTCP in highly asymmetric links in

terms of bandwidth and latency. We have chosen Mininet[15]

to emulate the scenarios. Mininet uses the kernel of the

computer that we use and it creates a virtual environment

using the kernel’s network stack and virtualization

technology[16]. This will enable us to realistically evaluate

the behaviour of MPTCP in the Linux Kernel in our chosen

scenarios. We have currently built the below testbed on

Mininet shown in Figure 6.

The testbed we have built is essentially three Linux virtual

machines, all running the MPTCP kernel 4.19. “Host-01”

acts as the server and “Host-02” acts as the client of the

simple topology we have created. “Router-01” is the machine

which acts as the router which connects the client and server.

Figure 6: Test Bed developed using Mininet.

The testbed we have built is essentially three Linux virtual

machines, all running the MPTCP kernel 4.19. “Host-01”

acts as the server and “Host-02” acts as the client of the

simple topology we have created. “Router-01” is the machine

which acts as the router which connects the client and server.

We ran this testbed on a computer with an Intel® Core™

i7 Processor, with 8GB RAM on an HDD hard drive running

the operating system Ubuntu 20.0.4 with the MPTCP Kernel

4.19.

F. Experimental Results and Evaluation.

Using the test bed discussed in Section E, we have done

the following experiments with the link conditions mentioned

in Table 1 to evaluate the behaviour of MPTCP in highly

asymmetric links. For this paper, we have chosen the

bandwidth and latency of a subflow as the independent

variable and throughput as the dependent variable while

keeping the other network characteristics as control variables.

TABLE 1: EXPERIMENTAL SCENARIOS.

In our evaluation, we send a data segment of 1GB over the

connection and record the first 10 seconds of the transmission

throughput. To increase the accuracy of the results we have

run the experiments 10 times and measured the throughput by

running iperf[17], a network performance measurement tool.

Scenario

Number
Single Link

TCP

Connection

{Bandwidth,

Latency}

Multipath TCP Connection

{Bandwidth, Latency }

Link 01 good

path

Link 02 bad

path

01 400Mpbs, 2ms 400Mpbs,

2ms

400Mpbs,

2ms

02 400Mpbs, 2ms 400Mpbs,

2ms

4Mpbs,

2ms

03 400Mpbs, 2ms 400Mpbs,

2ms

400Mpbs,

200ms

04 400Mpbs, 2ms 400Mpbs,

2ms

4Mpbs,

200ms

05 400Mpbs, 2ms 400Mpbs,

200ms

4Mpbs,

2ms

An Evaluation of Multipath TCP with Highly Asymmetric Subflows 60

March 2024 International Journal on Advances in ICT for Emerging Regions

Then we plotted the graphs using the average of the 10

measurements.

In theory, MPTCP should perform well under symmetric

paths. To demonstrate this scenario we have first conducted a

test with an MPTCP connection with similar subflows which

have similar bandwidths and similar latencies. For this test,

we have used the bandwidth and latency conditions

mentioned in Experiment 01 of Table 1. We can observe, in

Figure 7a that the aggregation of the two symmetric

connections produces a throughput which is nearly double the

throughput of the single-path TCP connection. In this

scenario, MPTCP has performed well over symmetric paths.

To demonstrate the effect of subflows with highly

asymmetric bandwidths, Experiment 02 of Table 1 is

conducted. The latencies of the subflows are kept the same

and the bad path will have one-tenth of the bandwidth of the

good path. In this scenario, as seen in Figure 7b, we observe

that MPTCP is underperforming as its throughput is less than

the TCP throughput. In order to identify whether latency has

the same effect on MPTCP we then conduct Experiment 03

of Table 1. The bandwidths of the subflows are now kept the

same and the latency of the bad path is now changed to one-

hundredth of the good path. Similar to Experiment 02, it is

again noticed that MPTCP underperforms since its

throughput is less than the TCP throughput in Figure 7c.

To observe the effect of the subflow with both high latency

and low bandwidth we perform Experiment 04 in Table 1.

The bandwidth of the bad path is one-tenth of the good path

and the latency of the bad path is a hundred times of the good

path. As seen in Figure 7d, we again notice MPTCP

underperforming with the aggregation of relatively bad

bandwidths and high latencies in a single subflow.

Asymmetry of subflows can arise in different manners. In

all the experiments discussed up to now, asymmetry of the

MPTCP connection was due to one path being the good path

and the other bad being the path with regards to a network

characteristic. But an MPTCP connection can have two

asymmetric bad paths as well. In Experiment 05 of Table 1,

we demonstrate a scenario where one path is better than the

other path in terms of bandwidth but has very high latency.

The other bad path has low bandwidth coupled with

relatively better latency. Both paths are bad paths but

asymmetric due to different network conditions. As seen in

Figure 7e, the MPTCP underperforms to a much worse

degree compared to the other scenarios. This scenario has a

much lower throughput compared to the TCP throughput.

Here it is noted that the good network characteristics of

neither subflows are appreciated in the MPTCP connection.

VI. DEFINING A SCHEDULER ALGORITHM FOR MPTCP

G. Preliminary Experimental Analysis

From the results of the experimental scenarios of Table 1,

it is observed that MPTCP underperforms when a connection

is established with highly asymmetric subflows. As discussed

earlier, one of the main goals of MPTCP is to at least perform

as well as TCP and we have observed that this goal cannot be

accomplished within the tested extreme conditions. It is

evident that the presence of the bad path in the MPTCP

connection has affected the good path as well. So the

fundamental question has to be asked is ”Will the throughput

of an MPTCP connection improve if the bad path is

removed?”

Before implementing a mechanism in the Linux Kernel,

we extended our test bed to emulate this scenario. We

repeated the experimental scenarios in Table 1 for 10 seconds

and removed the bad path in the 5th second.

(a) Results of Experiment 01 (a) Results of Experiment 01 (b) Results of Experiment 02 (c) Results of Experiment 03

(d) Results of Experiment 04

Figure 7: Experimental Results of Scenarios in Table 1

(e) Results of Experiment 05

61 J.R.M.D.B. Karunarathne, Tharindu Wijethilake, Chamath Keppitiyagama

International Journal on Advances in ICT for Emerging Regions March 2024

Figures 8, 9, 10, 11 depict the Experiments 2,3,4,5 from

Table 1 respectively. These experiments each have been

repeated and the average was plotted to increase the accuracy.

Except for the scenario in Experiment 5 in Table 1, all the

other scenarios have shown a positive response when the bad

link was removed. The Iperf-Graphs show the increase of the

throughput, where it reaches the throughput level of single-

path TCP. The WiresharkGraphs depict that when the bad

path is broken the flow becomes stable and packets-per-

second increase in the good-path.

(a) Iperf Graph

(b) Wireshark Graph

Figure 8: TCP and MPTCP over Highly Asymmetric Bandwidth Links with

bad link breaking in the 5th second

(a) Iperf Graph

(b) Wireshark Graph

Figure 9: TCP and MPTCP over links with high delay asymmetry with bad

link breaking in the 5th second

(a) Iperf Graph

(b) Wireshark Graph

Figure 10: TCP and MPTCP over links with High Bandwidth, Low Delay

and Low Bandwidth, High Delay with bad link breaking in the 5th second

(a) Iperf Graph

(b) Wireshark Graph

Figure 11: TCP and MPTCP over links with high delay asymmetry with bad

link breaking in the 5th second

H. Defining the Scheduling Algorithm

The aim of the proposed scheduling algorithm is to

minimize the effect on the throughput of an MPTCP

connection when it contains highly asymmetric links in terms

of bandwidth and latency. But in the context of this research,

the aim of the new scheduler should be to minimize or cut off

sending packets via the bad path. We identified two key

elements when that should be defined when defining a new

scheduling algorithm.

1. Metric - To identify whether to minimize sending

packets via a certainsubflow.

2. Threshold - To identify ”when” to minimize

sending packets via a subflow, the metric should

An Evaluation of Multipath TCP with Highly Asymmetric Subflows 62

March 2024 International Journal on Advances in ICT for Emerging Regions

reach a threshold and this threshold should be

defined.

The subflow selection algorithm in the current default

MPTCP scheduler is depicted in Algorithm 1. The metric

used in selecting the suitable subflow is the RTT (Round Trip

Time).

Algorithm 1 Subflow selection algorithm of the default

MPTCP scheduler

 for subflow of subflows of MPTCP connection do

if subflow fails defined checks then

continue

end if

 if subflow→rtt < minimum rtt then

set minimum rtt = subflow→rtt

best subflow = subflow

end if

return best subflow

The aim of the scheduler design is to minimize the effect

on the throughput of the MPTCP connection when the

subflows are asymmetric in terms of bandwidth and latency.

The RTT of a subflow is the suitable indicator to get a

reflection of the latency in the subflow[18].

The impact of the bandwidth of the subflow should also be

reflected in the metric. The congestion control mechanism of

TCP estimates the available end-to-end bandwidth and uses

the estimation to recover from congestion, thus achieving

higher throughput[19]. Therefore the size of the Congestion

Window of the subflow was selected to account for the

influence of bandwidth. It is also important to note that the

throughput of a subflow is calculated as follows[20],[21],

Throughput of a TCP flow = (Congestion window)*(MSS)

RTT

Here congestion window is the congestion window of the

subflow. MSS and RTT are the maximum segment size and

the round trip time of the subflow respectively. Therefore, the

metric we define to use in our scheduler(m) is,

m = (Congestion window) * (MSS)

RTT

A threshold is needed for the scheduler to know ”when” to

minimize the transmission over a subflow. In the context of

this research, the threshold should find a point where the total

MPTCP connection does not perform at least as much as the

best TCP subflow in the connection.

Implementing this threshold in the Linux implementation

of MPTCP is challenging to define due to several reasons. An

MPTCP connection does not maintain any aggregate

performance metrics. The term aggregate performance here

means, the collective performance of all the subflows. Only

the performance metrics of the individual subflows are kept

on track. As the experiments of the earlier sections revealed,

the presence of a bad path will also affect the performance of

the good path. Therefore, it is challenging to define a

threshold with reference to the best performance of the good

path as MPTCP does not store any historical metrics.

Due to the challenging nature of developing the threshold,

we examined how other solutions were implemented. Baidya

et al.[14] in their work tried to improve the performance of

MPTCP with a congestion control algorithm called Slow Path

Adaptation depicted in Algorithm 2. Although this algorithm

is not a scheduling algorithm, it bares a close resemblance to

our design.

Algorithm 2 Slow Path Adaptation Algorithm -

Congestion Control

In the Congestion Control for pathi ,

do the following

if R > Threshold then

Mark the pathi as a bad path

 else

Unmark the pathi

In Algorithm 2, ”R” is the metric. Baidya et al.[14] has

checked this metric against a ”Threshold”. There is no

mention of this ”Threshold” or how it was formed in their

work. Therefore we proceeded in developing our own

threshold which is defined in Algorithm 3, The Dynamic

Threshold. Here the best-recorded throughput of a subflow is

recorded. If at any point, the sum of throughputs of all

subflows go below the recorded best single path throughput,

then the bad can be ignored. Therefore, the threshold here is

the best-recorded throughput of a single path which will be

calculated dynamically each time a data transfer happens.

Algorithm 3 Algorithm to calculate the Dynamic Threshold

for Proposed Scheduler

maximum throughput recorded = 0

sum of throughputs = 0

for subflowi of subflows of MPTCP connection do

throughputi = congestion windowi ∗ MSSi/RTTi

if subflowi→max throughput < throughputi then

Do subflowi→max throughput =

throughputi

end if

if maximum throughput recorded < subflowi→max

throughput then

Do maximum throughput recorded =

subflowi→max throughput

end if

sum of throughputs+ = throughputi

 end for

if sum of throughputs < maximum throughput recorded then

Do ignore bad path

end if

VII. IMPLEMENTATION AND EVALUATION

We implemented the proposed Scheduling Algorithm in

the Linux implementation of MPTCP by customizing the

Linux Kernel source code. In order to evaluate our

63 J.R.M.D.B. Karunarathne, Tharindu Wijethilake, Chamath Keppitiyagama

International Journal on Advances in ICT for Emerging Regions March 2024

implementation we had to extend our experimental setup. Our

Test Environment was developed on Mininet does not have

the ability to create dynamic link conditions in the middle of

transmission. Baidya et al.[14] in their experiments have

found an alternate way to create dynamic traffic by

introducing a UDP flood to one subflow in the middle of a

transmission. We have adopted the same approach to create

dynamic traffic as shown in Figure 12.

Figure 12: Test Bed on Mininet with UDP Flooding

I. Evaluation of Proposed Scheduler Implementation on

Static TCP Traffic

To demonstrate the effect of static asymmetric subflows,

we redid the experiments from Table 1 and compared the

results with the default scheduler. Figures 13, 14, 15, 16

depicts the results of Experimental Scenarios 2,3,4,5 of Table

1 respectively. As seen in the graphs MPTCP with the

dynamic threshold scheduler has outperformed MPTCP with

the dynamic scheduler in all scenarios except Scenario 5 of

Table 1. Since Scenario 5 depicts an extreme corner case, it

can be concluded that the dynamic threshold scheduler has

performed better than the default scheduler of MPTCP for

static asymmetric subflows.

Figure 13: Iperf-Graph: TCP, MPTCP with default scheduler and MPTCP

with dynamic threshold scheduler over Highly Asymmetric Bandwidth Links

Figure 14: Iperf-Graph: TCP and MPTCP with default scheduler and

MPTCP with dynamic threshold scheduler over links with high delay

asymmetry

Figure 15: Iperf-Graph: Dynamic threshold scheduler over links with High

Bandwidth, Low Delay and Low Bandwidth, High Delay

Figure 16: Iperf-Graph: Dynamic threshold scheduler over links with High

Bandwidth, High Delay and Low Bandwidth, Low Delay.

J. Evaluation of Proposed Scheduler Implementation on

Dynamic TCP traffic

Figure 17: Iperf Graph: Throughput of MPTCP with default scheduler and

MPTCP with dynamic threshold scheduler with UDP flooding

Using the setup discussed earlier to evaluate dynamic

traffic on mininet, we measure the performance of the

dynamic threshold scheduler. In Figure 17, it can be noticed

that MPTCP with the dynamic threshold recovers the fastest

among all the implementations. The reason for this behaviour

is the different design approaches in the scheduling algorithm.

The default scheduler is a selection algorithm that selects the

best flow to transmit data. The predefined threshold

algorithm is a depreciative and selection algorithm that

depreciates the bad path and selects the good path out of the

remaining paths. Once the bad path is depreciated, it does not

have the chance to transmit packets again. But TCP

calculates the path characteristics dynamically (while

transmitting packets). Therefore, the scheduler will not know

An Evaluation of Multipath TCP with Highly Asymmetric Subflows 64

March 2024 International Journal on Advances in ICT for Emerging Regions

the current situation of the bad path and will keep

depreciating the path throughout the transmission.

To mitigate this behaviour, we propose periodically

sending packets via all subflows despite the link conditions.

Then the MPTCP connection can dynamically keep track of

the link conditions in each subflow and will be notified once

the link conditions improve. Therefore, we extend the

dynamic threshold scheduler algorithm by implementing a

timer as shown in Algorithm 4 to periodically transmit

packets via all the subflows in an MPTCP connection.

Algorithm 4 The Extended Dynamic Threshold Algorithm

for subflowi of subflows of MPTCP connection do

throughputi = congestion windowi ∗ MSSi/RTTi

if throughputi < dynamic threshold then

mark path as bad path

end if

if subflow i marked as bad path then

if transmit time == true then

transmit packets over bad path

else ignore subflow end if

end if

We conduct the same experiments done earlier to analyze

the behaviour of this algorithm in dynamic traffic. Figure 18

marks the throughput of MPTCP with the extended dynamic

threshold scheduler with the ”△” symbol for clear visibility.

We notice that this implementation successfully recovers to

the pre-UDP-flood throughput level after the UDP flooding

stops.

Figure 18: Iperf Graph: Throughput of MPTCP with default

scheduler, MPTCP with dynamic threshold scheduler and

MPTCP with extended dynamic threshold scheduler with

UDP flooding

For further visibility, the Wireshark output of MPTCP

with the extended dynamic threshold scheduler is plotted in

Figure 19. It is clearly noticed how the subflow affected by

the UDP flood recovers after the UDP flow ends.

Figure 19: Wireshark Graph: Packets per second of MPTCP with extended

dynamic threshold scheduler

It is clear that the reason behind the dynamic threshold

scheduling algorithm not recovering to its original potential

after the UDP flood ends was the scheduler not getting a

chance to rediscover the latest characteristics of the subflow.

Therefore, it is evident that periodically transmitting packets

of the bad path is the solution for the above phenomenon.

Hence we have developed a scheduling algorithm capable of

handling highly asymmetric subflows in terms of bandwidth

and latency in static and dynamic traffic conditions.

VIII. CONCLUSIONS AND FUTURE WORK

Multipath TCP is a promising protocol that will aid in

solving the multihomed problem and help utilize unused

resources in devices connecting to the internet. However,

Multipath TCP may face challenges when deployed on highly

heterogeneous links. In this paper, we have discussed the

MPTCP protocol and the architecture of MPTCP in the Linux

Kernel. We evaluated the implementation of MPTCP to

identify design choices that may lead to MPTCP

underperforming in the presence of highly asymmetric links.

We then evaluated MPTCP in several chosen scenarios and

presented the results of how an MPTCP connection with

highly asymmetric links in terms of bandwidth and latency

has underperformed a single-path link TCP connection.

Based on the results we designed a scheduling algorithm,

the Extended Dynamic Threshold Scheduler, which could be

deployed in MPTCP environments for steady transmissions

despite the asymmetry of subflows. We expect that our

experimental results and the evaluation of the design choices

of the Linux Kernel which leads to MPTCP underperforming

will encourage researchers to present better solutions to

improve MPTCP in the Linux Kernel. We have done the

evaluation in an emulated environment. In future work,

researchers can focus on conducting these experiments on a

physical setup. Furthermore, researchers can evaluate the

performance of MPTCP with other network characteristics

like packet-loss rate and jitter in MPTCP connections with

more than two links, since we have restricted our study to

MPTCP connections with two links.

REFERENCES

[1] B. Marr, The top 4 internet of things trends in 2023 (Nov 2022).
URL https://www.forbes.com/sites/bernardmarr/2022/11/

07/the-top-4-internet-of-things-trends-in-2023/?sh=291c55312aea
[2] L. Schumann, T. V. Doan, T. Shreedhar, R. Mok, V. Bajpai, Impact of

evolving protocols and covid-19 on internet traffic shares, arXiv

preprint arXiv:2201.00142 (2022).
[3] E. Nordmark, M. Bagnulo, Shim6: Level 3 multihoming shim

protocol for ipv6, Tech. rep. (2009).

[4] R. Moskowitz, T. Heer, P. Jokela, T. Henderson, Host identity
protocol version 2 (hipv2), Tech. rep. (2015).

65 J.R.M.D.B. Karunarathne, Tharindu Wijethilake, Chamath Keppitiyagama

International Journal on Advances in ICT for Emerging Regions March 2024

[5] R. Stewart, Q. Xie, K. Morneault, C. Sharp, H. Schwarzbauer, T.

Taylor, I. Rytina, M. Kalla, L. Zhang, V. Paxson, Stream control
transmission protocol (2007).

[6] A. Ford, C. Raiciu, M. J. Handley, O. Bonaventure, C. Paasch, TCP

Extensions for Multipath Operation with Multiple Addresses, RFC
8684 (Mar. 2020). doi:10.17487/RFC8684.

URL https://www.rfc-editor.org/info/rfc8684

[7] Use multipath tcp to create backup connections for ios (Jan 2022).

URL https://support.apple.com/en-us/HT201373

[8] P. b. O. Bonaventure, Mptcp.
URL : http://blog.multipath-tcp.org/blog/html/2018/12/10/

the_first_multipath_tcp_enabled_smartphones.html

[9] Linux kernel multipath tcp project.

URL https://www.multipath-tcp.org/
[10] M. Hassan, R. Jain, High performance TCP/IP networking, Vol. 29,

Prentice Hall Upper Saddle River, 2003.

[11] S. Barr´e, C. Paasch, O. Bonaventure, Multipath tcp: from theory to

practice, in: NETWORKING 2011: 10th International IFIP TC 6
Networking Conference, Valencia, Spain, May 9-13, 2011,

Proceedings, Part I 10, Springer, 2011, pp. 444–457.

[12] C. Paasch, S. Ferlin, O. Alay, O. Bonaventure, Experimental
evaluation of multipath tcp schedulers, in: Proceedings of the 2014

ACM SIGCOMM workshop on Capacity sharing workshop, 2014, pp.

27–32.
[13] C. Raiciu, C. Paasch, S. Barre, A. Ford, M. Honda, F. Duchene, O.

Bonaventure, M. Handley, How hard can it be? designing and
implementing a deployable multipath {TCP}, in: 9th {USENIX}

symposium on networked systems design and implementation ({NSDI}

12), 2012, pp. 399–412.
[14] S. H. Baidya, R. Prakash, Improving the performance of multipath tcp

over heterogeneous paths using slow path adaptation, in: 2014 IEEE

international conference on communications (ICC), IEEE, 2014, pp.
3222– 3227.

[15] M. P. Contributors. [link].

URL http://mininet.org/
[16] R. L. S. De Oliveira, C. M. Schweitzer, A. A. Shinoda, L. R. Prete,

Using mininet for emulation and prototyping software-defined

networks, in: 2014 IEEE Colombian conference on communications
and computing (COLCOM), Ieee, 2014, pp. 1–6.

[17] V. GUEANT, Iperf - the ultimate speed test tool for tcp, udp and

sctptest the limits of your network + internet neutrality test. URL

https://iperf.fr/

[18] K. Obraczka, F. Silva, Network latency metrics for server proximity,

in: Globecom’00-IEEE. Global Telecommunications Conference.
Conference Record (Cat. No. 00CH37137), Vol. 1, IEEE, 2000, pp.

421–427.

[19] M. Gerla, M. Y. Sanadidi, R. Wang, A. Zanella, C. Casetti, S.
Mascolo, Tcp westwood: Congestion window control using

bandwidth estimation, in: GLOBECOM’01. IEEE Global

Telecommunications Conference (Cat. No. 01CH37270), Vol. 3,
IEEE, 2001, pp. 1698–1702.

[20] C. Avin, Csci-1680 transport layer iii congestion control strikes back.

URL : https://cs.brown.edu/courses/csci1680/f13/lectures/14-
congestion.pdf

[21] Simon s. lam ().

URL : https://www.cs.utexas.edu/users/lam/395t/slides/
Congestion\%20Control\%202\%20talks.pdf

