
International Journal on Advances in ICT for Emerging Regions 2014 07 (02)

1

Abstract— Quality software are robust, reliable and easy to

maintain, and therefore reduces the cost of software maintenance.

Since software systems undergo modifications, improvements and

enhancements to cope with evolving requirements, quality of

software can be decreased. While software system is evolving,

refactoring is one of the methods which have been applied with the

purpose of improving the software quality. Refactoring is defined

as the process of improving the design of the existing code by

changing its internal structure without affecting its external

behavior, with the main aims of improving the quality of software

product. Therefore, there is a belief that refactoring improves

quality factors such as understandability, flexibility, and

reusability. However, there is limited empirical evidence to

support such assumptions.

The objective of this study is to validate/invalidate the claims

that refactoring improves software quality. Experimental research

approach was used to achieve the objective and ten selected

refactoring techniques were used for the analysis. The overall

impact of selected refactoring techniques and the impact of

individual refactoring technique were assessed based on external

measures namely; analyzability, changeability, time behavior and

resource utilization.

After analyzing the experimental results, overall analysis ended

up with the result that refactoring deteriorates the code quality.

However, individual analysis shows that some refactoring

techniques improve the code quality while rest is deteriorating the

code quality. Furthermore, among the tested ten refactoring

techniques, “Replace Conditional with Polymorphism” ranked in

the highest as having high percentage of improvement in code

quality and “Introduce Null Object” was ranked as worst which is

having highest percentage of deteriorate of code quality among the

analyzed ten refactoring techniques.

Index Terms— Refactoring, Software Maintenance, Code

Quality Improvement, Code Quality Measures, ISO 9126

I. INTRODUCTION

oftware quality can be described as the conformance to

functional and non-functional requirements, which are

related to characteristics described in the ISO-9126 standard

namely reliability, usability, efficiency, maintainability and

portability [1]. The factors that affect software quality can be

classified into two groups [2]: factors that can be directly

measured i.e. internal quality attributes (e.g. Coupling,

Cohesion, Line of Code and etc.) and factors that can be

measured only indirectly i.e. external quality attributes (e.g.

understandability, analyzability and etc.).

Quality software are robust, reliable and easy to maintain,

and therefore reduces the cost of software maintenance [3].

Therefore, developers and designers always strive for quality

software. However, any useful software system requires

constant evolution and change. While software system is

evolving, maintaining the software quality is one of the vital

factors in software maintenance process.

As the software system is enhanced, modified and adapted to

new requirements, the code become more complex and drifts

away from its original design. Since, the major part of total

software development cost is devoted to software maintenance.

Maintenance of software is reported as a serious cost factor [4]

and as stated in [5], over 90% of the software development cost

is for software maintenance.

Software maintenance best practices are arising with the

purpose of a better evolution of software while preserving the

quality of software systems. One solution proposed to reduce

the software maintenance effort is software code refactoring [6]

which is a method to continuous restructure code according to

implicit micro design rules. According to the Fowler’s

definition [6], refactoring is the change made to the internal

structure of software to make it easier to understand and

cheaper to modify without changing its observable behavior.

Refactoring is by definition supposed to improve the

maintainability of a software product; however, its effect on

other quality aspects is unclear. Therefore, there are hot and

controversial issues about refactoring.

As stated by Mens and Tourwé [4], refactoring is assumed to

positively affect non-functional aspects, likely extensibility,

modularity, reusability, complexity, maintainability, and

efficiency. Recently Bois and Mens [7] performed a return on

investment analysis on an open source project, in order to

estimate savings in effort, given a specific code change. They

found that, most of the time, refactoring has beneficial impacts

on maintenance activities, and thus are motivated from an

economical perspective. However, additional negative aspects

of refactoring are reported, too [4]. They consist of additional

An Empirical Exploration of Refactoring effect

on Software Quality using External Quality

Factors

S.H. Kannangara and W.M.J.I. Wijayanayake

S
Manuscript updated on February 12, 2014. Recommended by Dr.

Damitha Karunarathne on July 10,2014.
S.H. Kannangara is with the Department of Industrial Management,

Faculty of Science, University of Kelaniya, Sri Lanka. (e-mail:

Sandeepa.kannangara@gmail.com).
W.M.J.I. Wijayanayake is also with the Department of Industrial

Management, Faculty of Science, University of Kelaniya, Sri Lanka. (e-

mail: janaka@kln.ac.lk).

S.H. Kannangara and W.M.J.I. Wijayanayake

International Journal on Advances in ICT for Emerging Regions 2

memory consumption, higher power consumption, longer

execution time, and lower suitability for safety critical

applications.

Several studied have been conducted to evaluate the impact

of refactoring of software quality ([8], [9]). Even though some

of those studies claim that refactoring improves the quality of

software, most of them did not provide any quantitative

evidence. Therefore, the empirical evidence of the effect of

refactoring is rarely to be found [10]. Moreover, there is lack of

studies which identified the most beneficial refactoring

techniques among available large number of refactoring

techniques. As mentioned by Stroggylos and Spinellis [11],

‘effect of a refactoring on the software quality’ is a one of the

open issues that remain to be solved.

Altogether, the real advantages and disadvantages of

refactoring are still to be fully assessed. As regards quality, it

appears to be a convergence of positive remarks, still, without

solid quantification. Furthermore, there are few quantitative

evaluations of impact of each refactoring techniques to the

software quality. It is sometimes difficult to judge whether the

refactoring in question should be applied or not without

knowing the effect accurately. Especially in software

development industry, from the viewpoint of project managers,

it is imperative to quantitatively evaluate the effect of

refactoring on software quality before applying it. Without

knowing which refactoring technique will be more beneficial in

terms of quality, managers cannot judge whether they should

go for refactoring or not because they have to be cost sensitive.

Therefore, there is a need of study which can quantitatively

evaluate the impact of each refactoring technique on quality of

code.

The objective of this study is to evaluate the real effect of

refactoring on code quality using external measures. Moreover,

to identify the refactoring techniques which have highest

positive impact on code quality that can help software

developers to select most beneficial refactoring techniques.

The reminder of this paper structured as follows: Section 2

provides a summary of relevant literature which addressed the

relationship between refactoring and software quality.

Experimental design which is used for the research is described

in Section 3. Section 4 provides experimental data analysis.

Finally, the section 5 provides the discussion of results and

section 6 provides the conclusions and suggestions for future

research that can be pursued in this area.

II. RELATED WORK

Studies which have been conducted to evaluate the impact of

refactoring of software quality can be categorized into mainly

three categories according to focused quality factors: internal

quality factors, external quality factors and combination of both

quality factors.

Even though some of those studies claim that refactoring

improves the quality of software, most of them do not provide

quantitative evidence. However, few researches quantitatively

evaluated whether refactoring indeed improves quality (e.g. [8],

[9]) and came up with different results.

Among them, significant number of studies quantitatively

evaluated the impact of refactoring using internal quality

attributes. Bois and Mens [7] proposed a technique using

metrics to analyze the refactoring impact on internal quality

metrics as indicators of quality factors. They proposed

formalism based on abstract syntax tree representation of the

source-code, extended with cross-references to describe the

impact of refactoring on internal program quality. They focused

on three refactoring methods: “Encapsulate Filed”, “Pull up

Method” and “Extract Method”. However, they did not provide

any experimental validation in an industrial environment. The

results of their work showed both positive and negative impacts

on the studied measures. Stroggylos and Spinellis [11] analyzed

source code version control system logs of four popular open

source software systems to detect changes marked as

refactoring and examine their effects on software metrics. They

finally came up with a conclusion that refactoring does not

improve quality of a system in a measurable way. Bois et al.

[12] developed practical guidelines for applying refactoring

methods to improve coupling and cohesion characteristics and

validated these guidelines on an open source software system.

There were only five refactoring techniques under study:

Extract Method, Move Method, Replace Method with Method

Object, Replace Data Value with Object, and Extract Class.

They assumed that coupling and cohesion are internal quality

attributes which are generally recognized as indicators for

software maintainability. At the end they came up with results

that the effect of refactoring on coupling and cohesion

measures ranged from negative to positive. Kannangara and

Wijayanayake [13] evaluated both overall and individual

impact of selected refactoring techniques. Ten refactoring

techniques were evaluated by them through experiments and

assessed five internal measures: Maintainability Index,

Cyclomatic Complexity, Depth of Inheritance, Class Coupling

and Lines of Code. They used source codes developed using

C#.net and internal measures were extracted through Visual

Studio IDE. According to their findings, only maintainability

index indicated an improvement in code quality of refactored

code than non-refactored code and other internal measures did

not indicate any positive effect on refactored code.

Few other studies took the approach of assessing the

refactoring effects on external software quality attributes.

Geppert et al. [14] empirically investigated the impact of

refactoring on changeability. This study found that the

customer reported defect rates and change effort decreased in

the post-refactoring releases. The effect of refactoring on

maintainability and modifiability was investigated by Wilking

et al. [9] through an empirical evaluation. Maintainability was

tested by randomly inserted defects into the code and

measuring the time needed to fix them. Modifiability was tested

by adding new requirements and measuring the time and Line

of Code (LOC) metric needed to implement them. Their

findings on maintainability test show slight advantage for

refactoring and Modifiability test shows disadvantage for

refactoring. The impact of ten individual refactoring techniques

An Empirical Exploration of Refactoring effect on Software Quality using External Quality Factors

International Journal on Advances in ICT for Emerging Regions 3

empirically evaluated by Kannangara and Wijayanayake [15,

16] using four external measures: Resource Utilization, Time

Behavior, Changeability and Analyzability which are ISO sub

External Quality factors. Their experimental results indicated

that there are no quality improvements in refactored code for

majority of the selected refactoring techniques.

Other remaining studies used the approach of assessing the

impact of refactoring on internal attributes as indicators of

external software attributes. To do so, they defined and relied

on relationships between internal and external attributes

defined by different authors (ex. [17]). Kataoka et al. [8]

proposed coupling metrics as a quantitative evaluation method

to measure the effect of refactoring on program maintainability.

For the purpose of validation they analyzed a C++ program for

two refactoring techniques: Extract Method and Extract Class

which developed by a single developer, however did not

provide any information on the development environment.

Thus, it is questionable if their findings are valid in a different

context where development teams follow a structured process

and use common software engineering practices for knowledge

sharing. Moser et al. [18] proposed a methodology to assess

whether the refactoring improves reusability and promotes ad-

hoc reuse in an Extreme Programming (XP)-like development

environment. They focused on internal software metrics that

are considered to be relevant to reusability based on metric

interpretation of Dandashi and Rine’s work [17]. They came up

with a conclusion that refactoring has a positive effect on

reusability. The impact of refactoring on development

productivity and internal code quality attributes was analyzed

by Moser et al. [19]. A case study has been conducted to assess

the impact of refactoring in a close-to industrial environment

and the collected measures were Effort (hour), and Productivity

(LOC). Results indicate that refactoring not only increases

aspects of software quality, but also improves productivity.

Alshayeb [3] quantitatively assessed the effect of refactoring on

different external quality attributes: Adaptability,

Maintainability, Understandability, Reusability, and Testability

using software matrices based on metric interpretation of [17].

However, this study didn’t prove that refactoring improves

external quality of the software. Shatnawi and Li [20] studied

the effect of software refactoring on software quality. They

have conducted the study on a larger number of refactoring

techniques (43 refactoring) and measured four external quality

factors indirectly using nine different internal software quality

measures based on Quality Model for Object Oriented Design

(QMOOD). They had provided details of findings as heuristics

that can help software developers make more informed

decisions about what refactoring techniques to perform in

regard to improve a particular quality factor. They validated the

proposed heuristics in an empirical setting on two open-source

systems. They found that the majority of refactoring heuristics

do improve quality; however some heuristics do not have a

positive impact on all software quality factors.

After analyzing the above mentioned studies, several

concerns in those can be deduced as follows:

• All these previous studies did not come up with same

conclusions regarding the impact of refactoring. Therefore,

there is further need of analyzing the impact of refactoring.

• Most of the studies which were evaluated external quality

factors did it by using internal quality factors and majority

of them used quality models. Therefore, their research

findings are totally depending on the validity of those

quality models.

• Those who evaluated external quality factors only focused

one or two external quality factors. None of them focus on

ISO quality factors or other world accepted quality model

for the selecting quality factors.

• Except one study [20] all the other studies used only less

than ten refactoring techniques for their evaluation. Most

of them did not consider any valid justification when

selecting refactoring techniques for their study.

• As most of the studies did not evaluate large number of

refactoring techniques, they cannot be able to identify the

most beneficial refactoring techniques among catalogue of

large number of refactoring techniques.

• Finally, none of previous studies did the evaluation of impact

of individual refactoring techniques and evaluation of

overall impact of those refactoring techniques in the same

study.

III. EXPERIMENTAL DESIGN

Experiential evidence for the effect of refactoring is rarer to

be found. Those experiments were ended up with mixed picture

of refactoring. Therefore, experimental research approach is

selected to quantitatively access the overall impact of all the

selected refactoring and the impact of individual refactoring

technique separately.

The general approach followed by experiment was consisting

two groups. One group was assigned refactored code using

selected refactoring technique or techniques while the rest was

assigned non-refactored source code. The assignment to a

treatment and control groups were done randomly.

A. Selected Refactoring Techniques

Fowler [6] proposed 72 refactoring techniques in his

catalogue of refactoring. Among the studies which have

evaluated the impact of refactoring, the most recent study [20]

presented large evaluation of 43 refactoring techniques among

72 refactoring techniques in Fowler’s [6] catalogue. In there,

the evaluated refactoring techniques were ranked according to

the impact of code quality. Therefore, for this study, ten

refactoring techniques were selected from Shatnawi and Li‘s

[20] study which were ranked as having a high impact.

Selected Refactoring Techniques are:

• Introduce Local Extension

• Duplicate Observed Data

• Replace Type Code with Subclasses

• Replace Type Code with State/Strategy

• Replace Conditional with Polymorphism

• Introduce Null Object

• Extract Subclass

S.H. Kannangara and W.M.J.I. Wijayanayake

International Journal on Advances in ICT for Emerging Regions 4

• Extract Interface

• Form Template Method

• Push Down Method

B. Selection of Source Code

Refactoring is a technique which is mostly related with

object oriented programming. Therefore, the selection of

development environment and programming language was

done mainly based on the above reason.

Java, C# and C++ are the some of the most popular object

oriented programming languages which are being used in the

current IT industry. Among those, Java and C++ are the

commonly used programming languages in previous studies

which evaluated the impact of refactoring on code quality

improvement (e.g. [8], [20]).

Therefore, C# was selected as the programming language

and Visual Studio as the development environment for this

study.

To apply each refactoring technique separately, mini size

applications were selected as source codes. Most of those codes

were from mini scale game applications which are freely

available on World Wide Web. One relevant bad smell was

identified and one suitable refactoring technique was applied

among selected 10 refactoring techniques to each selected

source code. The average line of codes per each selected

application was around 300. Finally the ten refactored source

codes were available for the experiment with 10 original source

codes of them.

In order to apply 10 refactoring techniques together small

scale project with bad smells was selected as the source code.

The selected application was a system which was developed in

the Department of Industrial Management, University of

Kelaniya for its academic staff to schedule their personal and

professional events and to manage their online documents

repository. The source code contained around 4500 lines of

codes. The relevant bad smells were identified and all the

selected refactoring techniques were applied to the source code.

C. Selected Quality Factors

As there are only few studies which evaluated the impact on

refactoring on external quality factors without using internal

quality factors, this experiment was designed to evaluate the

external quality factors without using any internal quality

factors or quality models.

As stated by Al-Qutaish in his study [21], ISO 9126-1

quality model is the most useful one, since it has been built

based on an international consensus and agreement from all the

country members of the ISO organization. Therefore, ISO

quality model [1] is used for the selection of quality factors.

Following are the external quality attributes which are

selected from ISO quality attributes for this study:

1. Maintainability: Maintainability is a set of attributes that

bears the effort needed to make specified modifications.

Following sub characteristics were tested in this study [1].

i. Analyzability

ii. Changeability

2. Efficiency: Efficiency is a set of attributes that bear on the

relationship between the level of performance of the

software and the number of resources used, under stated

conditions. Following sub characteristic will be tested in

this study [1].

iii. Resource Utilization

iv. Time Behavior

Other quality factors in ISO quality model have to be

excluded from this study. The functionality factor was

excluded, because refactoring does not change the behavior of

systems, rather it changes the internal characteristics of the

systems without changing functionality. Usability factor was

excluded, because it is more end user oriented. Usability

indicates how it is easy to learn and use software as an end use

application, not about the source code. Reliability is

implementation oriented quality factor. Reliability is an

attribute that can only be estimated for live software

applications with a variety of test data and then inspecting the

defects uncovered or the number of times that the code

terminates normally with the expected output. Therefore,

reliability also excluded from the study. Portability indicates

level of flexibility to migrate software to a different hardware

or an Operating system. However, in this experimental design

there is no direct way to evaluate this factor. Therefore, this

factor has also been excluded from the study.

D. Variables and Measurements

1. Independent Variables:

The independent variable for this experiment is the treatment

which is a single, dichotomous factor. Either a participant is

assigned to a group which uses a refactored code or to a group

which uses a code without refactoring, in order to rule out the

placebo effect which known as a phenomenon which may

result in some therapeutic effect if subjects are given control

[22].

2. Dependent Variables:

The Dependent variables for this experiment are,

o Marks obtained for question papers

o Time need to fix bugs

o Task Execution Time

o Memory Consumption to execute task

E. Research Hypothesis

This study was aimed at presenting evidence that would

allow rejecting (or accepting) the following four hypotheses:

• Analyzability

H0A: Analyzability of refactored code is lower than non-

refactored code.

H1A: Analyzability of refactored code is higher than non-

refactored code.

• Changeability

H0B: Changeability of refactored code is difficult than non-

refactored code.

H1B: Changeability of refactored code is easier than non-

refactored code.

An Empirical Exploration of Refactoring effect on Software Quality using External Quality Factors

International Journal on Advances in ICT for Emerging Regions 5

• Time Behavior

H0C: Response time of refactored code is longer than non-

refactored code.

H1C: Response time of refactored code is shorter than non-

refactored code.

• Resource Utilization

H0D: Efficient utilization of computer Resources is low for

refactored code than non-refactored code.

H1D: Efficient utilization of computer Resources is higher

for refactored code than non-refactored code.

F. Sample Selection

The experiment was carried out with set of sixty students

firstly to access the individual impact of refactoring techniques

separately and set of twenty students secondly to access the

overall impact of selected refactoring techniques. When

selecting participants, the major skill that should have with

participants was decided as a programming skill. Current

undergraduates and recently passed out students of the

University of Kelaniya were selected as the population for

experimental sample selection.

The selection procedure was conducted for undergraduates

and recently passed out students based on two criteria. They

are,

• Based on semester examination results for programming

related subjects

• Based on survey results done in order to identify student’s

familiarity of C#.Net and Object Oriented Concepts:

Online questionnaire was designed to gather responses.

After collecting students’ results and responses, those were

aggregated and scaled to ten. Average values for each student

was calculated and ranked them according to the average. Then

the selection of students for the experiment was done according

to their rank starting from top ranks.

Group size was decided as 3 members per one group for the

first experiment or the analysis of each refactoring techniques

separately. Due to availability of limited resources at

Undergraduate laboratories and controlling of large groups is

not possible with available human resources, the required

number of participant for the second experiment was limited to

60.

For the second experiment or to analyze all the selected

refactoring techniques together, group size was decided as 10

members per one group due to the same reason.

G. General Procedure

The general procedure for both experiments: analysis of

overall impact of all the selected refactoring techniques and

analysis of individual impact of refactoring techniques was

mainly carried out in two steps. The first step of each

experiment was done with controlled and experimental groups.

The second step for each experiment was carried out in a

software testing environment, in order to collect resource

utilization and time behavior measures.

• Step 1:

The execution of the experiment started with an oral

presentation by introducing application which is being used for

the experiment, the experimental environment with procedure,

and the general conditions of the experiment.

After that, an initial test was carried out in order to assess the

impact on refactoring of code analyzability. Initially several

minutes were provided to both groups to be familiar with

source code and functionality of the application. One group was

a control group which was assigned to non-refactoring code

and the other group was an experimental group which was

assigned to a refactored code. After that a question paper was

distributed to participants and 30 minutes were provided to

answer the questions. At the end of the experiment, question

papers were evaluated and marks were recorded for the

analysis.

In order to analyze the impact of refactoring on changeability

next step of the experiment was carried out. Source codes with

randomly inserted bugs were provided to both experimental and

controlled groups. Error descriptions were provided for

semantic errors. Participants were worked on fixing bugs and

90 minutes of time frame was provided to fix the bugs. Time

used to fix bugs was recorded as data for analysis.

• Step 2:
In order to measure resource utilization; memory

consumption of software application to execute one selected

task was measured. As stated in [23] memory utilization is a

one attribute for predicting the utilization of hardware. To

measure time behavior task execution time was measured [23].

When selecting tasks, a piece of code which is mostly affected

by applied refactoring techniques was selected as task.

Programs were simulated to execute automatically 1000 times

in order to collect accurate figures related to execution time and

memory consumption during the selected task execution.

IV. ANALYSIS OF DATA

This section provides a summary of the data collection and

an analysis of the impact of refactoring using external

measures. The statistical analysis of experiment results and

research findings are discussed within this section.

As the research is quantitative and involves ratio data,

parametric statistical test was used for hypothesis testing. When

the sample size was less than 30, t-distribution was used for

hypothesis testing. And when the sample size is greater than 30,

z-tests was employed to test difference between two means.

A. Analysis of the individual impact of Refactoring

Techniques separately

• Data analysis for Analyzability
Analyzability was measured by using marks obtained by

each group member for the given question paper as explained

in previous section. The time duration for question paper was

30 minutes and final mark was given out of 10. Table 1

summarized the mean values for each refactoring technique.

S.H. Kannangara and W.M.J.I. Wijayanayake

International Journal on Advances in ICT for Emerging Regions 6

Table 1 Mean Values for Analysability (Marks obtained) for each

Refactoring Technique

Refactoring Technique Control

Group

Experiment

al Group

Introduce Local Extension 9.33 8.67

Duplicate Observed Data 8.67 8.67

Replace Type Code with

Subclasses

9.33 8.33

Replace Type Code with

State/Strategy

8 8.67

Replace Conditional with

Polymorphism

6.67 9.67

Introduce Null Object 5.67 8.33

Extract Subclass 6 6

Extract Interface 7 7

Form Template Method 8.33 8

Push Down Method 9 8.67

A common hypothesis which is being tested under

Analyzability for each refactoring technique is that

“analyzability of refactored code is higher than non-refactored

code”. Table 2 summarized the results of hypothesis testing for

each refactoring technique.

Table 2 Summary of Hypotheses Testing Results for Analysability for

each Refactoring Techniques

Refactoring Technique H0

Reject

H0

Accept

Introduce Local Extension *

Duplicate Observed Data *

Replace Type Code with Subclasses *

Replace Type Code with

State/Strategy

 *

Replace Conditional with

Polymorphism

*

Introduce Null Object *

Extract Subclass *

Extract Interface *

Form Template Method *

Push Down Method *

Except one refactoring technique which is “Replace

Conditional with Polymorphism”, for other refactoring

techniques the assumption of better analyzability thus cannot be

answered according to hypothesis testing for the mini size code.

• Data analysis for Changeability

The changeability of individual refactoring technique, time

needed to fix bugs in minutes was used. Table 3 summarized

the experimental results.

Table 3 Summarized Results for Changeability (in Minutes) for each

Refactoring Technique

Refactoring Technique Control

Group

Experimental

Group

Introduce Local Extension 9 14

Duplicate Observed Data 6.33 12.3

Replace Type Code with 12.6 6.67

Subclasses

Replace Type Code with

State/Strategy

5 7.67

Replace Conditional with

Polymorphism

8.67 13.3

Introduce Null Object 24.6 29

Extract Subclass 22 31

Extract Interface 13.6 10

Form Template Method 9.67 26.3

Push Down Method 4.33 10

Hypothesis which is tested under Changeability for each

refactoring technique is that the “changeability of refactored

code is easier than non-refactored code”. Table 4 summarized

results of hypothesis testing for each refactoring technique.

Table 4 Summary of Hypotheses Testing Results for Changeability for

each Refactoring Techniques

Refactoring Technique H0

Reject

H0

Accept

Introduce Local Extension *

Duplicate Observed Data *

Replace Type Code with Subclasses *

Replace Type Code with

State/Strategy

 *

Replace Conditional with

Polymorphism

 *

Introduce Null Object *

Extract Subclass *

Extract Interface *

Form Template Method *

Push Down Method *

The assumption of better changeability for all the refactoring

techniques thus cannot be answered according to hypothesis

tests; because, there is an insufficient statistical evidence to

claim that time spent by experimental group is less than control

group. Therefore, the conclusion of better changeability is not

facilitated with the mini size source code.

• Data analysis for Time Behavior

The measurement of time behavior related for each

refactoring technique was measured by recording task

execution time as explained earlier. Results were recorded in

milliseconds.

Table 5 Summarized Results for Time Behaviour (in Milliseconds) for

each Refactoring Technique

Refactoring Technique Control

Group

Experimental

Group

Introduce Local Extension 1.63 1.51

Duplicate Observed Data 138.46 141.39

Replace Type Code with

Subclasses

0.04 0.06

Replace Type Code with

State/Strategy

0.02 0.03

Replace Conditional with

Polymorphism

0.23 0.21

An Empirical Exploration of Refactoring effect on Software Quality using External Quality Factors

International Journal on Advances in ICT for Emerging Regions 7

Introduce Null Object 0.0004 0.0009

Extract Subclass 269.29 304.98

Extract Interface 17.27 36.11

Form Template Method 0.23 0.27

Push Down Method 10.36 10.17

A hypothesis which was tested for time behavior is that the

“response time of refactored code which is less than non-

refactored code”. Table 6 summarized the results of hypothesis

testing.

Table 6 Summary of Hypotheses Testing Results for Time behaviour for

each Refactoring Techniques

Refactoring Technique H0

Reject

H0

Accept

Introduce Local Extension *

Duplicate Observed Data *

Replace Type Code with Subclasses *

Replace Type Code with

State/Strategy

 *

Replace Conditional with

Polymorphism

*

Introduce Null Object *

Extract Subclass *

Extract Interface *

Form Template Method *

Push Down Method *
.

Among the evaluated ten refactoring techniques, only three

refactoring techniques; “Introduce Local Extension”, “Replace

Conditional with Polymorphism” and “Push down Method”

indicated that there is better time behavior after in refactored

code. However, the assumption of better time behavior for the

refactored code cannot be answered for the majority of

refactoring techniques according to hypothesis testing; because

according to the hypothesis test results, there is insufficient

statistical evidence to claim a time spent by refactoring code to

respond for particular task is less than non-refactored code.

• Data analysis for Resource Utilization

Resource utilization was measured for each selected

refactoring techniques by using memory consumption of

program while it was executing as explained earlier. Results

were recorded in bytes.

Table 7 Summarized Results for Resource Utilization (in bytes) for each

Refactoring Technique

Refactoring Technique Control

Group

Experimental

Group

Introduce Local Extension 8192.00 8192.00

Duplicate Observed Data 170062.85 165414.53

Replace Type Code with

Subclasses

8192.00 8192.00

Replace Type Code with

State/Strategy

8192.00 8192.00

Replace Conditional with 8192.00 8192.00

Polymorphism

Introduce Null Object 0.00 8192.00

Extract Subclass 7246943.48 7246391.17

Extract Interface 519120.00 519120.00

Form Template Method 8192.00 8192.00

Push Down Method 25742.81 25834.20

A hypothesis which was tested for Resource Utilization is

that “efficient utilization of computer Resources which is

higher for the refactored code than the non-refactored code”.

Table 8 summarized the results of hypothesis testing.

Table 8 Summary of Hypotheses Testing Results for Resource Utilization
for each Refactoring Techniques

Refactoring Technique H0

Reject

H0

Accept

Introduce Local Extension - -

Duplicate Observed Data *

Replace Type Code with Subclasses - -

Replace Type Code with

State/Strategy

- -

Replace Conditional with

Polymorphism

- -

Introduce Null Object - -

Extract Subclass *

Extract Interface - -

Form Template Method - -

Push Down Method *

Hypothesis testing for resource utilization for both

“Duplicate Observed Data” and “Extract Subclass” refactoring

techniques indicates better resource utilization. However,

hypothesis testing could not be able to carry out for some

experimental results due to zero deviation within experimental

results. Other experiments are ended up with the result as there

is insufficient statistical evidence to claim that better resource

utilization in term of memory consumption.

• Summary of Results

Table 9 presents summary of hypothesis testing results. The

following symbols are used to indicate the results.

o Null Hypothesis Rejected: ‘+’

o Null Hypothesis Accepted: ‘-‘

o Hypothesis testing is not applicable: ‘0’

Table 9 Summary of hypothesis testing results for the effect of each

refactoring on code quality using external measures

Refactoring Techniques

A
n

al
y

za
b

il
it

y

C
h

an
g

ea
b

il
it

y

T
im

e

B
eh

av
io

r
R

es
o

u
rc

e

U
ti

li
za

ti
o

n

H
0
 A

cc
ep

te
d

H
0
 R

ej
ec

te
d

Introduce Local

Extension

- - + 0 2 1

Duplicate Observed

Data

- - - + 3 1

S.H. Kannangara and W.M.J.I. Wijayanayake

International Journal on Advances in ICT for Emerging Regions 8

Replace Type Code

with Subclasses

- - - 0 3 0

Replace Type Code

with State/Strategy

- - - 0 3 0

Replace Conditional

with Polymorphism

+ - + 0 1 2

Introduce Null Object - - - 0 3 0

Extract Subclass - - - + 3 1

Extract Interface - - - 0 3 0

Form Template Method - - - 0 3 0

Push Down Method - - + - 3 1

Through the hypothesis testing results, it can be noticed that

except refactoring technique “Replace Conditional with

Polymorphism”, all the other refactoring techniques show

higher number of quality deteriorates than quality

improvements.

B. Analysis of the overall impact of selected Refactoring

Techniques

• Data Analysis for Analyzability

Analyzability was measured by using marks obtained by

each group member for the given question paper. Same

question paper which contained 15 multiple choice and short

answer questions was distributed to both controlled and

experimental groups. The time duration for question paper was

30 minutes and final mark was given out of 15. Hypothesis

which was tested for Analyzability is that “analyzability of

refactored code is higher than non-refactored code”. Table 10

summarized results of hypothesis testing.

Table 10 Hypothesis test results for Analysability

Level of Significance 0.05

Controlled Group

Sample Size 10

Sample Mean 7.1

Sample Standard Deviation 3.6

Experimental Group

Sample Size 9

Sample Mean 6.63

Sample Standard Deviation 2.13

t Test Statistic 0.344524

p-Value 0.466775

Do not reject the null hypothesis

The assumption of better analyzability cannot be answered

according to hypothesis test results; because there is

insufficient statistical evidence to claim marks obtained by

experimental group is higher than control group. In fact it is

lesser in experimental group. Therefore, it can be stated that

refactoring does not significantly affect analyzability of small

scale code.

• Data Analysis for Changeability

The measurement of changeability, which consisted of a

random insertion of two non-syntactical errors and one new

requirement, was measured by using time needed to fix bugs in

minutes. Hypothesis which was tested under Changeability is

that “changeability of refactored code is easier than non-

refactored code”. Table 11 summarized results of hypothesis

testing.

Table 11 Hypothesis Test Results for Changeability

Level of Significance 0.05

Controlled Group

Sample Size 10

Sample Mean 59

Sample Standard Deviation 26.27

Experimental Group

Sample Size 10

Sample Mean 77

Sample Standard Deviation 27.72

t Test Statistic -1.57325

p-Value 0.933464

Do not reject the null hypothesis

The assumption of better changeability thus cannot be

answered according to hypothesis testing; because, there is

insufficient statistical evidence to claim that time spent by

experimental group is less than control group. Therefore, it can

be stated that refactoring does not significantly affect

changeability of small scale code.

• Data analysis of Time Behavior

The measurement of time behavior was measured by

recording task execution time. Piece of code which is highly

affected by refactoring treatment was selected and the task

which is related to that code segment was selected for testing.

Both pre and post refactored programs were modified to

execute 1000 times automatically. Results were recorded in

milliseconds. Outliers were detected from 1000 sample size

from both samples. A hypothesis which was tested for Time

Behavior is that “response time of refactored code is less than

non-refactored code”. Table 12 summarized results of

hypothesis testing.
Table 12 Hypothesis Test Results for Time Behaviour

Level of Significance 0.05

Original Code

Sample Size 994

Sample Mean 61.18

Population Standard Deviation 21.22

Refactored Code

Sample Size 985

Sample Mean 75.71

Population Standard Deviation 20

Z-Test Statistic -15.7109

p-Value 1

Do not reject the null hypothesis

The assumption of better time behavior of refactored code

thus cannot be answered according to hypothesis testing;

because, there is insufficient statistical evidence to claim that

An Empirical Exploration of Refactoring effect on Software Quality using External Quality Factors

International Journal on Advances in ICT for Emerging Regions 9

task execution time for refactored code is less than code

without refactoring. Therefore, the conclusion of better time

behavior is not facilitated by refactoring.

• Data analysis for Resource Utilization

Resource utilization was measured by using memory

consumption of program while it is executing. Piece of code

which is highly affected by refactoring treatment was selected

and the task which is related to that code segment was selected

for testing. Both pre and post refactored programs were

changed to execute 1000 time automatically. Results were

recorded in bytes. Outliers were detected from 1000 sample

size from both samples. A hypothesis which was tested for

Resource Utilization is “efficient utilization of computer

Resources is higher for refactored code than non-refactored

code”. Table 13 summarized results of hypothesis testing.

Table 13 Hypotheses Testing results for Resource Utilization

Level of Significance 0.05

Original Code

Sample Size 1000

Sample Mean 370970.4

Population Standard Deviation 159046.9

Refactored Code

Sample Size 1000

Sample Mean 377310.3

Population Standard Deviation 162510.2

Z-Test Statistic -0.88169

p-Value 0.811027

Do not reject the null hypothesis

The assumption of better resource utilization of refactored

code thus cannot be answered according to hypothesis testing;

because according to the hypothesis test results, there is

insufficient statistical evidence to claim a minimum memory

allocation for refactored code than non-refactored code.

Therefore, the conclusion of better resource utilization is not

facilitated by refactoring.

• Summary of Results

Table 14 shows the summary of hypothesis testing results of

the impact of refactoring on code quality measured by using

external measures. In the table symbols are represented as

follows.

o Improvement: ‘+’

o Deteriorate: ‘-‘

o No impact: ‘0’

Table 14 Summary of the effect of refactoring on code quality using

external measures

A
n

al
y

za
b

il
it

y

C
h

an
g

ea
b

il
it

y

T
im

e
B

eh
av

io
r

R
es

o
u

rc
e

U
ti

li
za

ti
o

n

N
o

.

D
et

er
io

ra
te

s

N
o

.

Im
p

ro
v

em
en

ts

- - - - 4 0

Here it can be noticed that none of the external measures

show improvements in code quality when all the selected

refactoring techniques are applied together.

V. RESEARCH FINDINGS AND DISCUSSION

Impact of refactoring on code quality improvement using

external measures were measured using four sub quality factors

defined in ISO 9126 quality model. Firstly, the individual

impact of selected refactoring techniques on code quality was

measured. Summarized results were presented in Table 15 and

for each refactoring technique the percentage of quality

improvements, unchanged and deteriorates were presented.

Table 15 Summary of analysis of refactoring techniques using external

measures

Refactoring Techniques

D
et

er
io

ra
te

s

U
n

ch
an

g
ed

Im
p

ro
v

em
en

ts

Introduce Local Extension 50% 25% 25%

Duplicate Observed Data 75% 0% 25%

Replace Type Code with

Subclasses 75% 25% 0%

Replace Type Code with

State/Strategy 75% 25% 0%

Replace Conditional with

Polymorphism 25% 25% 50%

Introduce Null Object 100% 0% 0%

Extract Subclass 75% 0% 25%

Extract Interface 75% 25% 0%

Form Template Method 75% 25% 0%

Push Down Method 75% 0% 25%

Except “Replace conditional with polymorphism” which is

having the highest percentage of quality improvement, all the

other refactoring techniques have a high percentage of

deteriorate of quality according to the results of analysis.

Among them “Introduce null object” have the highest

percentage of deteriorate of quality according to Table 15.

For each external measure, the percentage of improvements,

unchanged and deteriorates were calculated from tested ten

refactoring techniques.

Table 16 Summary of effect of refactoring on external measures –

Analysis of each refactoring techniques

 External Measure

D
et

er
io

ra
te

U
n

ch
an

g
ed

Im
p

ro
v

em
en

t

Analyzability 90% 0% 10%

Changeability 100% 0% 0%

Time Behavior 70% 0% 30%

Resource Utilization 10% 60% 30%

S.H. Kannangara and W.M.J.I. Wijayanayake

International Journal on Advances in ICT for Emerging Regions 10

From the results summarized in Table 16, it can be

concluded that there is a significant negative effect on code

analyzability, changeability and time behavior. However,

resource utilization of refactored code is unchanged when it

compare with same non-refactored code.

In order to further analyze the results of first experiment,

second experiment was executed to identify the overall impact

of selected refactoring techniques on code quality. Hypothesis

test results indicate that there is deteriorate of code quality in

refactored code than non-refactored code. Table 17 summarized

the findings of analysis of the overall impact of refactoring on

code quality.

Table 17 Summary of effect of refactoring on external measures – Overall

Analysis of refactoring techniques

 External Measure

D
et

er
io

ra
te

U
n

ch
an

g
ed

Im
p

ro
v

em
en

t
Analyzability *

Changeability *

Time Behavior *

Resource Utilization *

When results of overall analysis from Table 17 and

aggregated results of analysis of each refactoring technique

from Table 16 are compared, the results for analyzability,

changeability and time behavior are similar to each other.

Therefore, by using overall analysis and analysis of each

refactoring technique, it can be concluded that code

analyzability, changeability and time behavior deteriorate after

applying ten refactoring techniques which was used for this

study.

According to the analysis of individual refactoring

techniques, the new ranking for selected 10 refactoring

techniques can be presented. Here in Table 18 it presents

comparison between Shatnawi and Li’s [20] ranking and new

ranking proposed with this study.

Table 18 Proposed Ranking for Refactoring Techniques According

to the impact on external measures

Proposed

Ranking

Refactoring Technique Shatnawi

and Li’s [20]

Ranking

1 Replace Conditional with

Polymorphism

5

2 Introduce Local Extension 1

3 Duplicate Observed Data 2

4 Extract Subclass 7

5 Push Down Method 10

6 Replace Type Code with

Subclasses

3

7 Replace Type Code with

State/Strategy

4

8 Extract Interface 8

9 Form Template Method 9

10 Introduce Null Object 6

From the analysis of four external measures “Replace

Conditional with Polymorphism” ranked in the highest as

having a high percentage of improvement in code quality.

“Introduce Null Object” was ranked as worst which is having

the highest percentage of deteriorate of code quality.

VI. CONCLUSION AND FUTURE WORKS

The main objective of this study was to assess the impact of

refactoring on code quality improvement in software

maintenance. In order to achieve that, the impact of refactoring

was assessed using external measures namely; analyzability,

changeability, time behavior and resource utilization.

Experimental research approach was used to assess the ten

selected refactoring techniques.

When analyzing all the refactoring techniques together and

separately, analyzability resulted as deteriorate the code

analyzability after refactoring the source code. Further, the

analysis of refactoring techniques together and analysis of

refactoring techniques separately, for changeability it indicates

a negative impact on code changeability by refactoring. Results

of time behavior indicate negative impact of refactoring. When

analyzing all the refactoring techniques together, resource

utilization indicates that the efficient utilization of computer

resources is low for refactored code than non-refactored code.

However, when analyzing each refactoring techniques

separately the summarized result indicates that the efficient

utilization of computer resources is kept unchanged for both

refactored code and non-refactored code.

According to the results of individual analysis of refactoring

techniques, the most beneficial refactoring technique among

evaluated 10 refactoring techniques is reported as “Replace

Conditional with Polymorphism”.

Finally, according to the results of both overall analysis and

individual analysis of refactoring it can be stated that

refactoring does not improve the code analyzability and code

changeability in small size applications. Further refactoring

does not support better resource utilization and refactoring does

not have better time behavior while executing small scale

source code.

The results of this study indicate that there is further need of

addressing the impact of refactoring. Refactoring techniques

used in this study were selected from the ranking done by

previous study [20]. Therefore, in the future it is better to

conduct a study to find refactoring techniques which are

commonly used in industry by a survey. Then do the analysis of

the impact of those commonly used refactoring techniques.

That will be more advantageous to the software development

industry rather than selecting refactoring techniques

subjectively. Further, it will be better that if the same

experimental setup can be execute in industry environment with

the industry experts and with the industry level matured source

code. Then the outcome of this study can be able to validate

against the outcome of that study.

An Empirical Exploration of Refactoring effect on Software Quality using External Quality Factors

International Journal on Advances in ICT for Emerging Regions 11

VII. ACKNOWLEDGEMENTS

Special thanks go to all the participants of the experiment for

their contribution of valuable time and effort.

REFERENCES

[1] International Standards. (2001). ISO/IEC 9126-1 Standard. [Online].

Available: http://webstore.iec.ch/preview/infoisoiec91261%7Bed1.

0%7Den.pdf.

[2] R Pressman, Software Engineering: A Practitioner’s Approach, 6th edn,

McGraw-Hill, 2005
[3] M. Alshayeb, “Empirical investigation of refactoring effect on software

quality”, Information and Software Technology, vol. 51, pp.1319–1326,

2009.

[4] T. Mens and T.A. Tourwé, “Survey of Software Refactoring”, IEEE

Trans. on Software Engineering, vol. 30, no. 2, pp. 126-139, 2004.

[5] K. Jussi. (2010). Software Maintenance Costs. [Online]. Available:

http://users.jyu.fi/~koskinen/smcosts.htm.

[6] M. Fowler, Refactoring Improving the Design of Existing Code, Addison-

Wesley, 1999.

[7] B.D. Bois and T. Mens, “Describing the impact of refactoring on internal

program quality”, in Proc. of the International Workshop on Evolution of

Large-scale Industrial Software Applications, Amsterdam, The

Netherlands, 2003, pp. 37-48.

[8] Y. Kataoka et al., “A quantitative evaluation of maintainability

enhancement by refactoring”, in Proc. of the IEEE International

Conference on Software Maintenance, Montreal, Quebec, Canada, 2002.

[9] D. Wilking, U. Khan and S. Kowalewski, “An empirical evaluation of

refactoring”, e- Informatica Software Engineering Journal, vol. 1, pp. 27-

42, 2007.

[10] T. Mens et al.,” Refactoring: Current Research and Future Trends”,

Electronic Notes in Theoretical Computer Science, vol.80, no.3, 2003.

[11] K. Stroggylos and D. Spinellis, “Refactoring – does it improve software

quality?”, in Proc. of 5th International Workshop on Software Quality

(WoSQ’07:ICSE Workshops), 2007, pp. 10–16.

[12] B.D. Bois et al., “Refactoring – improving coupling and cohesion of

existing code”, in Proc. of 11th Working Conference on Reverse

Engineering (WCRE’04), 2004, pp. 144–151.

[13] S. H. Kannangara and W.M.J.I. Wijayanayake, “Measuring the Impact of

Refactoring on Code Quality Improvement Using Internal Measures”, In

Proc. of the International Conference on Business & Information, Sri

Lanka, December 2013.

[14] B. Geppert et al., “Refactoring for changeability: a way to go”, in Proc. of

11th IEEE International Software Metrics Symposium (METRICS’05),

Como, Italy, 2005.

[15] S. H. Kannangara and W.M.J.I. Wijayanayake, “Impact of Refactoring on

External Code Quality Improvement: An Empirical Evaluation”, In Proc.

of International Conference on Advances in ICT for Emerging Regions,

Sri Lanka, December 2013.

[16] S. H. Kannangara and W.M.J.I. Wijayanayake, “Impact of Refactoring on

Code Quality Improvement in Software Engineering”, In Proc. of 2nd

National Conference on Technology and Management, Sri Lanka, January

2013.

[17] F. Dandashi and D.C. Rine, “A Method for Reusability of Object-

Oriented Code Using a Validated Set of Automated Measurements”, in

Proc. of 17th ACM Symposium on Applied Computing (SAC 2002),

Madrid, 2002.

[18] R. Moser et al., “Does Refactoring Improve Reusability?”, in Proc. of 9th

International Conference on Software Reuse (ICSR’06) , 2006, pp.287–

297.

[19] R. Moser et al., “A case study on the impact of refactoring on quality and

productivity in an agile team”, in Proc. of the Central and East-European

Conference on Software Engineering Techniques, Poznan, Poland, 2007.

[20] R. Shatnawi and W. Li., “An Empirical Assessment of Refactoring

Impact on Software Quality Using a Hierarchical Quality Model”,

International Journal of Software Engineering and Its Applications, vol.

5, no. 4, 2011.

[21] R. E. Al-Qutaish, “Quality Models in Software Engineering Literature:

An Analytical and Comparative Study”, Journal of American Science,

vol. 6, no. 3, pp. 166-175, 2010.
[22] Hani. (2009) Placebo Effect [Online]. Available: http://www.experiment -

resources.com/placebo-effect.html.

[23] (2012) [Online]. ISO 9126 Metrics. Available: http://www.rockynook.co

m/samples /97/ISO_9126_Metrics.pdf.

http://webstore.iec.ch/preview/infoisoiec91261%7Bed1.%200%7Den.pdf
http://webstore.iec.ch/preview/infoisoiec91261%7Bed1.%200%7Den.pdf
http://users.jyu.fi/~koskinen/smcosts.htm

