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Abstract— The usage of reconfigurable hardware in wireless 

sensor networks plays an important role which enables multi 

parameter estimation in complex environments. The need for 

vast sensor compatibility and sensor fusion will become crucial 

requirements as wireless sensor networks become autonomous 

and intelligent. Due to the non linear behaviour of sensors and 

analogue circuitry in the front end, such applications often 

require a rigorous software model to perform sensor 

linearization for best accuracy. This paper presents an 

implementation of a reconfigurable wireless sensor node based 

on a CMOS analogue multiplexer network supporting universal 

functions for different industrial sensors while being compact 

and energy efficient, which is conducive to wireless sensor 

networking. Further an accurate optimized and autonomous 

linearization technique based on rational interpolation is also 

presented in order to compensate non idealities of the sensor 

node. The concept, simulation results, prototype implementation 

with industrial components and the results of system integration 

are discussed in this paper to illustrate potential applications in 

mass scale data acquisition based on wireless sensor networks. 
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I. INTRODUCTION 

In the modern world, the combination of multi functioning 

data acquisition systems and wireless communication 

protocols provide creative means to develop energy efficient, 

intelligent wireless sensor nodes for industrial applications. 

The ability to interact with the physical environment in 

wireless domain provides more robust and versatile platform 

over traditional environmental monitoring scheme. 

Reconfigurable hardware technologies have been recently 

introduced to wireless sensor networks (WSN) for robust, low 

power operation while enabling multi parameter data 

acquisition for a given node. A single sensor node may be 

designed integrating a sensor element, signal conditioner and 

Network Application Processor (NCAP) into one sensor 

node. Single sensor MEMS (Micro-electro-mechanical 

Sensor) chips and motes are some examples for such a system 

[1]. If a node per sensor approach is used, many nodes are 

required in case different parameters of a certain area are to 

be monitored. Maintaining such a WSN is quite expensive as 

well as increases the complexity of the network. The 

traditional approach to provide multi sensor capability for a 

WSN node is by employing several signal conditioning stages 

to the front end of the circuit where every sensor interface is 

dedicated to a certain sensor type. Compared to traditional 

hardware design topologies, reconfigurable hardware designs 

have shown a certain improvement of designing more flexible 

devices [2]. Field programmable gate array (FPGA) based 

designs are more popular for digital sensors, though they 

require additional components to facilitate multi sensing 

operation in mixed signal domain [3]. In the analog domain, 

two major programmable hardware technologies are the field 

programmable analog arrays (FPAA) and programmable 

mixed signal system on chip technology (e.g. PSoC). Both 

technologies are capable of providing all the common 

components for supporting different mixed signal processing 

applications [4].   

II. RELATED WORK 

The development of an autonomous wireless sensor node 

involves the embedding self-adjustment functionalities that 

should be able to fix non idealities of the system such as 

offset, variations in gain and non linearity for rigorous 

operation. Such a system should utilize the least amount of 

time and power for readjusting process. An accepted practice 

utilized in the past by measurement system designers was to 

linearize the sensor signal in order to compensate for system 

non idealities. The subject of linearization of measurement 

systems has been considered on different forms and stages, 

basically in the design of circuits with MOS and CMOS 

technologies [5-6]. Studied cases included the usage of 

auxiliary hardware and programmable software solutions to 

evaluate the linearization performance of measurement 

systems. One application suggests analogue to digital 

converters to solve nonlinearities at the same time the 

conversion is made [7-8]. Further, ROM memories have been 

used to save data tables and optimize lookup tables to solve 

linearization problems [9-10]. Simple resistor divider 

technique and a programmable hardware linearization method 

were also presented [11-12]. The self-calibration concept 

using artificial neural networks is approached from different 

perspectives: simulation of auto calibration results [13] and 

works related with auto calibration of specific sensors [14-15]. 

Some of these cannot be easily implemented on a low power 

microcontroller (μC). Several important works related to 

recursive algorithms that can be applied to the self 

readjustment of intelligent sensors exist based on different 

type interpolation techniques. Among the simplest algorithms, 

the three point calibration method [16-17] suggests a simple 

point by point calibration technique for single and 

multidimensional data set. Also the progressive polynomial 

calibration method [18] and its improved version [19] were 

proven to be efficient methods in terms of computation 

burden and optimized accuracy. However achieving a highly 

non linear transfer function becomes difficult due to the large 

set of calibration points required at initial stage. 
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Fig. 1 Proposed WSN Node Design 

 

Recent studies [20] show that the use of rational polynomial 

interpolation for transfer function modelling has a better 

approximation for a given data set with the minimum least 

square error compared to polynomial approximations 

methods. Compared with other techniques such as Lagrangian 

Interpolation or Gauss Newton Approximation , the 

asymptotic behaviour and better interpolation ability of 

rational functions makes it ideal for modelling highly non 

linear characteristics of systems where the transfer function of 

the system can be expressed with least number of terms.  

 

         To counteract previously mentioned issues, we propose 

a design topology of a reconfigurable wireless sensor node 

which was designed based on ultra low power analogue 

components. The software of the central processing unit 

incorporates point by point linearization method which 

autonomously determines the best transfer curve for sensors 

by given calibration points. By using programmable mixed 

signal hardware architecture, this new approach enables a 

single channel of this node to obtain signals from a vast 

diversity of sensors. The most significant advantage would be 

the autonomous transfer function identification of non linear 

sensors. It also ensures homogeneity among WSN nodes. 

III. CONCEPT OF RECONFIGURABLE INTERFACE 

In the proposed system, the flexibility of reconfigurable 

interface is essentially important since it decides the universal 

functionality and application scope of the data acquisition 

process of WSN node. The interface circuit was designed to 

accommodate various types of sensor output signals, provide 

sensor driving, offset adjustment, data linearization and 

automatic gain to match the signals and sensitivities of 

different sensor elements. The trade-off between the 

measurement accuracy and the flexibility should be optimized 

so that the resulting system can be widely adaptable to the 

multi parameter system. Moreover power management of the 

device is critically important since WSN nodes are deployed 

in an energy constrained environment [21].  Fig. 1 shows the 

hardware block diagram of the WSN node where dedicated 

signal conditioning stages in traditional design were replaced 

by universal transducer interface module (UTIM).  

As seen from Fig. 1, the most distinct advantage of this 

design is that this can be further miniaturized through an 

integrated mixed circuit design, even though a modular 

approach was employed in the current prototype. 

 

A. Mixed Signal Circuit Design 

The UTIM is based on an analog multiplexer network which 

facilitates the required functionality to perform signal routing 

between sensor signals and amplifier stages. Time-division-

multiplexing will be used to take analog sensor signals from a 

distributed sensor array periodically so that data can be 

processed on a common transmission line in a digitally 

encoded format.  These multiplexers were chosen from 

CMOS logic family because of its high noise immunity and 

ultra low power profile, where the design can be fabricated to 

be compact with low power, cost effective implementation. 

Also UTIM uses the architecture to synchronize the 

multiplexing and sampling to ensure a proper settling of the 

analog data signals while maintaining energy efficiency.  

     The use of dynamic sensor power cycling with UTIM 

provides an opening for reducing average power consumption 

in applications where energy use must be tightly managed and 

power hungry sensors are interfaced. The average power 

dissipation, of a transducer is quantified by the following 

equation:  

(1) 

 

where D, PON , and POFF  represent duty cycle, power in 

normal operation and power in off-mode of the transducer 

respectively. Selecting appropriate duty cycle by considering 

settling time of the sensor, the average power of the entire 

system can be managed to operate in very low level. For 

instance, considering a load cell (VISHAY Model 9010), 

PAVG can be greatly minimized while maintaining the 

measurement accuracy. Table 1 shows the technical data of 

the load cell. 

 
Taking Ton (Power-on Time) =160mS (settling time + 10mS 

acquisition time), and Ton+off   (Cycle time) =1S the average 

power can be written: 

 

The average power consumed by the sensor is approximately 

16% of its normal operation power. Hence dynamic power 

cycling is proven to be energy efficient with the UTIM circuit. 

The initial design shown in fig. 2 is configured for four 

analogue channels. Each analogue channel consist of 4-wire 

interface, where Ex+, Ex-, Sen+ and Sen- correspond to the 

terminals of excitation supplies and differential sensor signal 

respectively. These differential signals will be converted into 

a single ended voltage by routing the signal to an appropriate 

analog block. Each analog block was design for a specific 

sensor type which may include Op-Amps, discrete component 

to provide signal conditioning and filtering before fed into the 

ADC of the processing unit (MCU).  The basic UTIM design 

may require an optional multiplexer stage, so that only one 

ADC channel is sufficient to digitize the sensor analog signal.   

TABLE 1 

TECHNICAL DATA OF THE LOAD CELL (VISHAY MODEL 9010) 

Parameter  Value 

Settling Time 150 mS (Typical)  

Operating Power 240 mW 

Off-Power 6.8 W  

 

OFFONAVG PDDPP )1( 

mWPAVG 0068.0)16.01()24016.0( 

mWPAVG 405.38
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Fig. 3 Bridge Excitation (Constant Current) 

 
Fig. 4 Low Cost Programmable Gain Amplifier 

B. Signal Conditioning Blocks 

The multi functioning capability of UTIM is achieved by 

integrating different signal conditioning blocks at the back 

end of multiplexer network. These intermediate blocks were 

made of analog functioning integrated circuits such as 

operational amplifiers; each block converts the sensor signal 

into a voltage parameter, matches impedances and scales the 

signal level prior to the ADC input. These analog blocks were 

designed based on the operational principle and the type of 

central element of the sensor, so that each block provides 

more general functions rather than being a dedicated interface 

type. Besides that, two independent excitation supplies were 

provided, where source selection is optional. Figure 3 shows 

the UTIM operation for a typical bridge sensor. 

Normally Bridge sensors generate a weak signal which 

represents change in resistance of the strain gauges. If the 

gauge is powered with voltage excitation, the voltage drops 

appear on Switch On resistance (Ron) of the multiplexer will 

cause a significant error to the measurement. In such a 

situation, it is adequate to drive the bridge with known current 

excitation where the Ron is not constant. Excitation Block (I) 

represents a basic current source device made with very few 

components. For single element varying bridge, the voltage 

output is given by; 

 

(2) 

          

 

where ∆R is the resistance change of the bridge element due 

to the applied strain.  

 

Programmable Gain Amplifier (PGA) is another important 

part of a data acquisition system. When dealing with wide 

range of signal levels, different gain ratios may be required to 

scale signals for better accuracy. Since most of PGAs 

available in the market are very expensive, we are proposing 

a low cost solution based on simple analog components. 

Figure 4 shows the design of PGA using a single op amp, 

analog mux with couple of discrete components for three 

different gain values.   

The control bus line of the multiplexer should be maintained 

in a logic level to provide the required gain. This design has 

the advantage of bypassing Ron from the gain stage so that 

the variations of Ron (caused by thermal drifts, multiplexer 

input voltage levels) will not affect on the measurement. 

Better performance can be obtained using precision resistors 

for R1 to R3. System parameters relevant to this design such 

as frequency response and gain errors will be discussed in the 

device implementation stage.  

IV. AUTONOMOUS LINEARIZATION TECHNIQUE 

Some sensors have the advantage of a very high sensitivity to 

changes in physical phenomena, and the disadvantage of an 

aggressively nonlinear characteristic. On the other hand   this 

might introduce a non linear error to the measurement, which 

Fig. 2 UTIM Based on Analogue Components at Front End 
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should be eliminated using a proper hardware design or 

software calibration. Some techniques based on numerical 

approximation methods have been discussed in early 

literature [22-28], include Lagrangian Interpolation 

Polynomials, Cubic Splines, Gauss Newton algorithm, 

Steepest Descent techniques. Generally for power constraint 

reconfigurable embedded systems, the least amount of time 

and computational burden always preferred in applying these 

algorithms. 

         Very little literature has been written with regard to 

rational functions so this area is mostly open for exploration 

to researchers and mathematicians. Rational approximation 

was found to be a successive method for linearizing highly 

non linear data due to its asymptotic nature. The method 

presented here is a simplified version of the Thiele’s 

continuous fraction algorithm which ultimately derives the 

transfer function of a sensor using conventional recursive 

divided differences for given dataset. The algorithm finds 

appropriate rational function after each calibration point 

utilizing a finite iterative technique. Because of this simple 

point by point interpolation process, the algorithm does not 

require memory to hold large matrices and computational 

loads such as matrix inversion etc. 

 

In the first step, we would consider calibrating univariate 

response. The algorithm starts with taking divided difference 

between two calibration data points. Using triangle rule, we 

can form the divided difference coefficients according to 

format as in Table II given below.  

 

Where;

 
        

(3) 

 

 

(4)  

 

 

 

Corresponding rational expression for each point can be 

recursively found according to the following procedure: 

 

(5) 

 

  

 

  

 

 

 

where  and  are given by the coefficients of diagonal 

and numerator fractions respectively.  

 

 

 

 

 

(6) 

 

 

where j = 1……n-1, n = number of calibration points 

 

Defining the continuous fraction given in (3) can be 

simplified to equation (4) which enables finding the final 

rational function for the entire data set.  

          

When using the proposed algorithm, it is necessary to define 

its performance to satisfy certain criteria such as, number of 

calibration points, minimum non linearity error, and 

computational speed. In order to demonstrate the performance 

of the proposed method, a non linear data set was generated 

using an increasing exponential function to interpolate by the 

Simplified Rational Interpolation (SRI) algorithm in the first 

step. The evaluation has been carried out by changing the 

linearity of the function keeping number of calibration points 

constant. The result shown in figure 5 was obtained using 4 

calibration points which clearly explains the behaviour of the 

non linear response. 

 

Figure 5 clearly shows the interpolated result of the non linear 

data set and its corresponding error curves. Point A, B, C and 

D represent successive calibration points which have been 

used to determine the approximated rational function. 

Variable r determines the non linearity of the function. 

Changing the non linearity by setting r = 0.2, 0.4 and 0.6, the 

TABLE II 

CALIBRATION DATA SET 

i xi fi Divided Differences 

0 x0 f0  

φ(x0,  x1) 

φ(x0, x2)      φ(x0 , x1 , x2)   

φ(x0, x3)      φ(x0 , x1 , x3)     φ(x0 , x1 , x2, x3)   

1 x1 f1 

2 x2 f2 

3 x3 f3 

fi and xi represent dependent and independent variables of the sensor 

response 
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Fig. 5. The interpolates data and its error plot with proposed algorithm for a 

non linear function 
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simulated error plot gives a good evaluation of the 

effectiveness of the algorithm. According to the error plots 

given in Fig 1, it can be noticed that 20% of maximum error 

has been reduced to 1% when the non linearity factor 

decreases by 0.2.  

Apart from that, linearization was attempted with popular 

Gauss Newton Algorithm (GNA), Polynomial Least Square 

Method (PLSM) [29-33] and Progressive Polynomial Method 

(PPM). To obtain an acceptable error for GN and PLSM 

method, a large number of data set, iterations and initial 

values were required. Compared to these methods, PPM 

which is a point by point calibration technique shows an 

acceptable accuracy of 75%, 4 data points. When the non 

linearity is further reduced (r = 0.4, 0.6) the observed 

accuracies were 80% and 87% respectively. This shows that 

the SRI algorithm provides the best accuracy with the least 

required number of calibration data points and computational 

burden. Increasing the number of calibration points to six, we 

can see the nonlinear error of the generated data set can be 

greatly reduced as shown in Fig 6.  

 

With r set to 0.2, the maximum error of the data set was 

minimized to 0.37% which is a great benefit of the proposed 

algorithm. The result proves that even the highest non 

linearity can be greatly reduced by increasing number of 

points in the algorithm.  
 

        In the second step of the evaluation, the algorithm was 

applied to linearize a standard 3.3k thermistor using 4 

calibration points. A thermistor is a good example for a non 

linear sensor which has considerable non linearity where the 

change in the measurement is most rapid at low temperatures, 

giving great resolution for determining the corresponding 

temperature values there. At the other end of the range, 

resistance levels change relatively less with temperature and 

measurement resolution is relatively poor. The sensor data set 

was taken from datasheet recommended by National Institute 

of Standard and Technology (NIST) [34]. Points were 

selected to cover its entire temperature range. The resistance 

value of the thermistor and corresponding temperature in 

Kelvin were selected as independent and dependent variables 

respectively. Following table shows the data set and their 

inverted differences. Four calibration points were selected 

from the resistance range representing temperature values 

ranging from 273K to 360K.  

 
Using eq(3), (4) and (6) the rational function can be computed 

step by step according to the following  format.  

 

     j = 1; 

 

 

 

    j = 2;  

 

 

 

    j = 3;  

 

 

 

 

The obtained rational function by the SRI algorithm and 

conventional Steinhart model for 3.3 k thermistor were 

compared with sensor data to evaluate the performance of the 

proposed method. The result from the simulation is shown in 

Fig 7.  

 

The error is significantly much smaller in terms of percentage 

when compared with other algorithms described previously 

and as seen in the figure, the SRI algorithm, with its lower 

TABLE III 
THERMISTOR EXAMPLE 

i R(Ω) T(K) Divided Differences 

0 341 359.26  

  -52.14 

  -87.23      -99.25    

-118.53    -103.00     -849.09   

1 3643 295.93 

2 7126 281.48 

3 10481 273.71 

 

 

Fig. 6.Minimized error result with six calibration points. 
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Fig. 7.Interpolated result compared with Stein Hart Equation 
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computation time is a significant leap in deriving the sensor’s 

characteristic function.  

 

The simulation results show that approximately 98% accuracy 

(1.14% of maximum error) can be achieved with 4 calibration 

points of the SRI algorithm. Compared to Steinhart model, 

SRI result gives a moderate value. If the computational 

workload is considered, the SRI algorithm has robust 

simplification steps rather than using logarithmic functions of 

Steinhart model for time constraint applications. The 

proposed algorithm was tested on an ARM Cortex M3 

microprocessor setting its operating frequency to 10MHz 

which is ideal for low power operating WSN applications. To 

find coefficients (divided differences) at the initial stage, the 

microprocessor required 119 uS. Only 84 uS execution time 

was required to compute the rational function at each 

recursion cycle. In contrast, Steinhart equation required 3.32 

mS for its logarithmic function, which makes the new SRI 

algorithm efficient in saving computational burden. However 

it is also important to note the convergence of the proposed 

method with minimum number of calibration points in order 

to evaluate the efficiency. The same example for thermistor 

can be used for this. Next figure shows the simulation result 

of the maximum error with respect to the calibration points 

used to interpolate the data set. 

 

Increasing the number of calibration points to 5, shows a 

dramatical change in maximum error of the interpolated data 

set. The maximum error of 1.14% for 4 point calibration has 

been minimized to 0.083% by increasing the number of 

points to 5, which is a great benefit of the proposed method. 

V. OVERALL PERFORMANCE & PROTOTYPE DESIGN 

Since the emphasis of this paper is focused on suggesting an 

autonomous linearization technique for a reconfigurable 

WSN system, the user may select and integrate other 

auxiliary peripherals for the WSN node, depending on the 

application requirements and feasibility. In developing the 

experimental prototype for this research, the paramount 

concern was creating a low power design, with universal 

capability and optimized accuracy. The effectiveness of the 

algorithm will be proven later in terms of processing speed 

and convergence. The components used for the UTIM 

included Dual 4:1 CMOS Analog Multiplexers (MAX4618) 

for the signal routing stage and a micro power op-amp 

(LT1079) for optimum power efficiency in this prototype. 

The performance of this UTIM was tested with the LPC1769 

ARM Cortex M3 micro processor from NXP and the XBee 

ZB module. The LPC1769 has ultra low power profiles for 

different sleep modes.  The power consumption of the UTIM 

with respect to its switching frequency with different sensor 

attachments was recorded as shown Fig 9.  

 

 

With the current consumption given in micro amperes (uA) 

and channel switching frequency in Hertz (Hz) in log-scale, 

the observations prove that the UTIM is highly power 

efficient for typical industry grade applications since the 

current consumption can be maintained as low as 478 uA for 

adequate switching frequencies. The device performance in 

high frequencies is determined by the frequency responses of 

individual components. To evaluate the frequency response of 

the measurement chain, we feed a sinusoidal signal to the 

input and record the signal output at final stage by setting 

PGA gain to 1, 10 and 100 respectively. The gain error of the 

final output with respect to the input signal frequency is 

shown in Fig 10.   

 

As shown in Fig 10, when PGA gain is set to 1 (1% tolerance 

resistors were used) the operational range of the device is 

limited to 200 kHz. Increasing gain to 10 and 100 

subsequently reduces the operation range to 50kz and 8kHz 

respectively. This behaviour can be expected in micro power 

operational amplifiers since the power optimization of VLSI 

design lead to a reduction in gain bandwidth product of the 

component. However this frequency limit is more than 

adequate for low power industry grade applications and this 

limit is where the optimum performance is preserved. If 

required, the performance can be extended to higher 

frequencies by simply replacing the op-amp used.  

     Once the data acquisition node was ready for operation 

along with the required calibration setup, the autonomous 

 

Fig. 8.Convergent Property. 

 

Fig. 9 Current Consumption of UTIM. 

 

Fig. 10 Frequency Response of the Prototype Design. 
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calibration could begin. This could be realized in two ways: 

the user may either provide points remotely to the node or let 

the node use an intelligent mechanism to find appropriate 

points for the automatic calibration stage. This improved 

linearization method provides the means to model the input 

output transfer function to match the effects of the 

environment parameters depending on whether the user 

knows about the environment subject to monitoring. If the 

user may not know much about the environment, the device 

will intelligently perform the calibration. A reference sensor 

is also used to correctly map the inputs with the outputs, so 

that subsequently the transfer function of the sensor is 

obtained by the SRI algorithm after the required calibration 

points are derived and this can be done within the 

microprocessor or externally for much more computational 

accuracy if required. With the SRI algorithm running in the 

micro-processor, the accuracy of the acquired data has been 

evaluated with different sensors attached to the prototype 

sensor node. The test bench included a K-type thermocouple 

(AEM 30-2067), 10k NTC Thermistor (EPCOS 

B57867S0103 10kΩ @ 25°C), Pt100 RTD (RS 611-8264) 

and a 20kg Load Cell (VISHAY Model 9010 - 2mV/V). 

Initially all sensors were tested with both voltage and current 

excitation supplies for best accuracy. The results were 

compared with the improved linearization method output to 

determine the effectiveness of proposed method. Table IV 

shows the comparison result. 

TABLE IV 
ACCURACY COMPARISON WITH SRI METHOD 

Sensor Best Accuracy 

Without SRI With SRI 

K type 

Thermocouple 

±3 C˚  ±0.8 C˚  

Thermistor ±1 C˚  ±0.5 C˚  

Pt100 RTD ±3 C˚ ±0.4 C˚  

Load Cell ±250g (1.3% full 

scale) 

< 0.5% full scale 

 

Here the proposed SRI algorithm can be successfully used in 

micro processor software to compensate signal errors present 

at the measurement. Further, the fast execution time of the 

algorithm provides a feasible time schedule for WSN event 

management. The prototype implementation of the WSN 

node is shown in Fig 11. 

VI. CONCLUSIONS AND FUTURE EXPLORATION 

The proposed UTIM concept has a highly flexible front end 

design for wireless sensor node technologies which 

reconfigures its hardware in an autonomic way to interface 

with a wide range of distributed sensors to solve the multi-

sensing challenge encountered in many WSN applications 

where different types of sensors are to be supported. Proposed 

Simplified Rational Polynomial Interpolation technique 

provides a robust linearization for sensors in order to maintain 

least amount of execution time required for reconfigurable 

hardware systems. Power consumption tests prove that UTIM 

is highly power efficient and can be integrated with an ultra 

low power processing unit (e.g. Nano Watt) in a WSN node. 

The circuit can be further miniaturized through surface mount 

devices. For future work, the development of adaptive 

reconfigurable hardware designs, autonomous sensor 

identification and sensor plug and play technologies will be 

evaluated to introduce a better deployment for distributed 

WSN applications. New possible algorithms that follow in the 

path of rational interpolation [35] will be explored to improve 

sensor linearization. Design improvements and 

miniaturization through newer high end versions of 

Programmable System-On-Chip integrated mixed signal 

devices will be considered with the required re-

configurability and the capable computational power. Other 

signal processing techniques will be also integrated to 

optimize the final solution. 
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