
International Journal on Advances in ICT for Emerging Regions 2016 9 (1)

June 2016 International Journal on Advances in ICT for Emerging Regions

Path Index Based Keywords to SPARQL Query

Transformation for Semantic Data Federations
Thilini Cooray, Gihan Wikramanayake

Abstract— Semantic web is a highly emerging research domain.

Enhancing the ability of keyword query processing on Semantic

Web data provides a huge support for familiarizing the

usefulness of Semantic Web to the general public. Most of the

existing approaches focus on just user keyword matching to

RDF graphs and output the connecting elements as results.

Semantic Web consists of SPARQL query language which can

process queries more accurately and efficiently than general

keyword matching. There are only about a couple of approaches

available for transforming keyword queries to SPARQL. They

basically rely on real time graph traversals? for identifying sub-

graphs which can connect user keywords. Those approaches are

either limited to query processing on a single data store or a set

of interlinked data sets. They have not focused on query

processing on a federation of independent data sets which

belongs to the same domain. This research proposes a Path

Index based approach eliminating real time graph traversal for

transforming keyword queries to SPARQL. We have introduced

an ontology alignment based approach for keyword query

transforming on a federation of RDF data stored using multiple

heterogeneous vocabularies. Evaluation shows that the proposed

approach have the ability to generate SPARQL queries which

can provide highly relevant results for user keyword queries.

The Path Index based query transformation approach has also

achieved high efficiency compared to the existing approach.

Keywords— Semantic Web; Keyword query processing;

SPARQL query generation; RDF Federations

I. INTRODUCTION

wadays the World Wide Web (WWW) has become

essential to everyone. People always tend to search the

web to retrieve information about almost everything. Once a

enters a query, the underlying query processors must be able

to gather results from available sources. What user is

interested is, receiving relevant answers for their questions,

efficiently.

 Ability to understand the meaning of user query is

important to provide relevant results. Once the user

requirement is understood, it should be presented in a way

which underlying data sources can understand and process.

The relevancy of results provided by the data source depends

on both the completeness of data stored in the source and how

well the user query is understood by the data source.

Manuscript received on 23 Nov 2015. Recommended by Prof. K. P.
Hewagamage on 16 June 2016.

This paper is an extended version of the paper “An Approach for

Transforming Keyword-Based Queries to SPARQL on RDF Data Source
Federations” presented at the ICTer 2015 Conference.

Thilini Cooray holds a B.Sc. (Honours) in Computer Science from the

University of Colombo School of Computing, Sri Lanka.(e-mail:
thilinicooray.ucsc@gmail.com).

Prof. Gihan Wikramanayake is a Senior Lecturer at the University of

Colombo School of Computing. (e-mail: gnw@ucsc.cmb.ac.lk).

 WWW contains huge amount of details about variety of

topics. Most of them are stored as web documents. Web

documents are capable of preserving complete details about

topics rather than compacting them to traditional databases

where only the details matches with the database schema are

stored while skipping others despite their necessity for the

completeness of information. However, as the amount of web

documents are extremely increasing, requirement for effective

storage mechanisms and efficient searching mechanisms were

highly demanded. This paved way to the emergence of the

concept of transforming web documents to web data.

 Semantic Web1 was introduced as a method of storing web

data in such a manner which is understandable to a computer.

. Resource Description Framework2 (RDF) was presented as

the standard format for storing and exchanging data. RDF

preserves the interconnections among data elements and use

graph structures for storage. Using graph structures for data

storing, is crucial for web data as they contain huge amounts

of relationships that relational databases are incapable of

maintaining. These relationships are essential when

recognizing the relevancy of data for a user query. Recently,

many researchers and academic institutes have taken the

initiative of exposing their data to the Web in RDF format.

SPARQL3 is the query language for RDF data. It is capable of

both representing information needs along with relationships

among elements and dive in RDF sources to extract

information considering those relationships.

 Relaxed models such as keyword queries are convenient

for general users to query data sources as they do not have to

consider the underlying complexity such as data structures and

schema when composing queries.

 Many researches have been carried out in keyword query

search over tree [1], [2], [3], [4] and graph [5], [6] structured

data. Basic idea behind keyword search is to identify matching

data elements for keywords from the underlying data source

and retrieve substructures which connect all those identified

elements.

 Structured queries are capable of retrieving more relevant

results efficiently and accurately compared to keyword

queries. However, composing structured queries require

expertise knowledge which is lacking among general users.

SPARQL is capable of retrieving more relevant results from

web data. Therefore, bridging the gap between user friendly

keyword queries and SPARQL allows general users to

retrieve highly relevant results without having knowledge

about underlying complexities. Transforming keyword queries

to SPARQL is still a novel topic which has not gained much

attention among semantic research attention. However, it

could be identified as one of the key points in familiarizing

the importance of Semantic web to general public and sharing

1 http://en.wikipedia.org/wiki/Semantic_Web
2 http://www.w3.org/RDF
3 http://www.w3.org/TR/rdf-SPARQL-query

N

Path Index Based Keywords to SPARQL Query Transformation for Semantic Data Federations 2

International Journal on Advances in ICT for Emerging Regions June 2016

its privileges with them for fulfilling their information needs

efficiently while enhancing the relevancy of results.

 The process of translating keyword queries to SPARQL

can be decomposed to following steps. 1) Mapping user

keywords to data elements. 2) Identifying sub-graphs which

can connect mapped data elements. 3) Generating queries

based on the relationships in the sub-graphs. Most of the

available approaches exploit graph traversal in real time for

identifying suitable sub-graphs [3], [4], [6], [8], [9]. Only

limited set of functions are carried out as preprocessing. Most

of these approaches provide approximate results because

traversing RDF graphs with millions or billions of data is very

expensive and highly time consuming. Hence there is a

requirement to seek for approaches which can reduce graph

traversal in query generating time.

 There are many contributors of the WWW who provides

information on related topics individually. For an example,

DBLP and ACM contain academic publication data

individually. None of them have entire publication data. In

contrast, Google Scholar connects sources such as DBLP and

ACM to provide more complete set of results for the public.

Therefore, general public is attracted more towards Google

scholar for their publication related information needs. Most

RDF sources are also maintained as individual dumps. In

order to provide more complete results with high accuracy, it

is important to combine those together. RDF federations have

been presented as a solution for this problem. Yet existing

RDF federations only accept SPARQL queries. Seeking for

approaches which can direct user queries to RDF federations

will enhance completeness and accuracy of provided results.

This research focuses on transforming keyword queries to

SPARQL on a RDF federation in order to allow general users

to access Semantic Web and fulfill their information needs.

Following are the main contributions of this research:

• Proposing an approach to map user keywords to

data elements resolving vocabulary level

heterogeneity - An available ontology alignment

mechanism is utilized for resolving vocabulary level

heterogeneity. Results of the alignment mechanism

are combined with a keyword index to map source

wise matching elements for user keywords. This

mechanism is capable of returning a set of keyword

matching elements for each data source in the

federation.

• Building a Path Index capturing full paths

accurately - Path Index is an existing concept which

reduces the cost of real time graph traversing for

keyword query processing. The existing logic intends

to store full paths from vertices to sink nodes as a

preprocessing task. However, the breadth-first search

based algorithm presented is unable to filter only full

paths, causing unnecessary graph traversals at real

time. Therefore, this research has proposed a depth-

first search based approach which is capable of

accurately capturing full paths.

• Utilizing the stored templates in the Path Index to

generate SPARQL queries without graph
traversing in real time - Path Index was previously

used only for keyword mapping. This research

proposes a way which Path Index can be utilized for

SPARQL query generation. The proposed approach

is capable of generating queries which can be directly

executed on SPARQL query engines. Results of

generated queries exhibit high precision and recall

values.

The paper is organized as follows: Section 2 discusses

related work; Section 3 gives an overview of the

methodology, Section 4, 5 and 6 gives an in-depth

explanation about each component of the suggested approach;

finally Section 7 provides experimental evaluations and in

Section 8, conclusions and future work are presented.

II. RELATED WORK

Even though there is no existing approach for

transforming keyword queries to SPARQL on RDF

federations, research has taken place in addressing each step

required for keyword to SPARQL transformation on RDF

federations. They are as follows; resolving vocabulary level

heterogeneity, mapping user keywords to data source

elements and identifying suitable sub-graphs connecting

keyword elements.

 Heterogeneity resolution is a core function of federations

according to Sheth and Larson [16]. There are different levels

of heterogeneity such as vocabulary level heterogeneity and

data level. However, vocabulary level heterogeneity must be

resolved to process keyword based queries in a federation.

SPARQL query rewriting is one approach for resolving

vocabulary level heterogeneity [17], [18], [19]. The input

query must be written in SPARQL using a specific

vocabulary for applying this solution. This cannot be applied

when input query is in keyword.

 Ontology alignment is another method proposed for

heterogeneity resolution among RDF data sources. Concept

level, property level and instance level are the ontology

alignment types according to Gunaratna et al. [20]. BLOOMS

[13], Aroma [21] and RiMOM [14] are some concept level

alignment approaches. Gunaratna et al. [20] have mentioned

that very less amount of research have been focused on

property level alignments. Alignment API [12] can be

identified as a proper tool for property level alignments from

different vocabularies. Since this research aims at

heterogeneity resolution for a federation, both concept level

and property level vocabulary resolutions are required.

 Indexing is the common approach adopted by almost the

entire keyword query processing approaches for matching

data elements with keywords. However types of indices they

have used are different. SearchWeb [8], Bidirectional Search

[6] keeps indices for both vertices and edges. They consider

the possibility of a user keyword occurs at an edge as well as

at vertices. BLINKS [5] believes that keywords can only

occur in vertices of the graph so index only vertices. Path

Index [7] only store sink nodes in their index arguing that

keywords only reside in sink nodes. When storing details,

most approaches index only the label of the graph element.

However SearchWeb [8] and Hermes [15] store some

additional information along with the label. Those details are

used for efficient sub-graph identification on that approach.

 Many approaches have been suggested for identifying

suitable sub-graphs which can connect keyword elements.

Basic tree search algorithms such as Breadth First Search [22]

and Depth First Search [23] were first applied for

substructure identification in tree structured data. Then

several other algorithms [24], [25] were proposed by

modifying those basic concepts. As RDF data sets mostly

have a graph structure, graph exploration approaches were

3 Thilini Cooray, Gihan Wikramanayake

June 2016 International Journal on Advances in ICT for Emerging Regions

proposed such as Backward Search [9] and Bidirectional

algorithm [6]. SearchWeb [8] has suggested a summarized

graph which has reduced the size of graph which needs to be

traversed at real time for finding suitable sub-graphs.

 Real time graph traversing is highly time consuming. M-

KS [26] uses a matrix to store the keyword relationships to

eliminate graph traversal at real time. They only focus on

binary relationships. G-KS [27] proposes a keyword

relationship graph to find a suitable sub-graph to resolve the

weakness of M-KS. Tran et al. [10] suggest a graph based

model to sub-graph identification. Cappellari et al. [7]

suggest a path index based approach, which stores edge

sequences from source nodes to sink nodes of RDF graphs.

As they have totally eliminated graph traversing at real time,

efficiency of this approach is really high. However they

require more storage space than other approaches.

 Among keyword searching approaches, only

three methods have been proposed for transforming

keyword queries to SPARQL. SearchWeb [8] and

Hermes [15] have proposed a method for

converting keyword queries to SPARQL by

identifying suitable sub-graph and converting it to

conjunctive queries. They have only proposed that

approach either to a single data source or a set of

linked data sources. They have not considered the

federation scenario. Unger et al. [28] have

suggested a linguistic analysis based approach for

transforming natural language queries to SPARQL.

They have ignored the capabilities of Semantic

Web in their solution.

III. METHODOLOGY

 We propose an approach for transforming keyword queries

to SPARQL on RDF data source federations within a set of

defined limitations. The main objective of our research is to

examine the feasibility of proposed approach for keyword to

SPARQL transformation on federations as no existing

approach has addressed this issue. We do not focus on

examining the generalizability and scalability of this approach

at this initial stage.

 We use academic publication data for explaining and

evaluating this approach at the initial phase even though this

proposed approach can be used domain independently. Author

name, published year and publication title are the initial set of

keyword fields we are using for generating keyword queries.

These fields were selected as those are the fields which are

highly queried regarding academic publications even in digital

libraries such as ACM and DBLP. We have defined a

specified format of queries to this approach. All conditions of

the user query should be represented according to the format

<field name>:<field value>. Comma should be used if

multiple conditions are presented. Field which needs results

should be indicated using a question mark (?). For an

example, accepted keyword query for “What are the

publications of James published in 1995?” is

“publication:?,author:James,year:1995”.

 RDF data are stored in graph structures. Therefore cycles

can occur. Inverse relationships can be identified as a main

reason for causing cycles in RDF graphs. This research only

aims at resolving cycles caused by inverse relationships on

RDF graphs.

 Heterogeneity resolving is a main focus in federations.

Vocabulary level heterogeneity and instance level

heterogeneity are the main levels of heterogeneity in RDF

federations. Approaches for dealing with those heterogeneous

situations are needed to be included in the architecture.

Resolving vocabulary level heterogeneity in a federation is

essential for retrieving complete results, because different

vocabularies usually use different terminologies for similar

concepts. Identifying the similarity among vocabularies paves

the way for extracting relevant results from heterogeneous

data sources. When consider instance level heterogeneity, it

contains a separate level of complexity. Different data sets

may store same value in different formats. For an example, an

author name "A.Bernstein" may have stored in one data set as

"A.Bernstein", while another data set as "Arnold Berstein".

Same name can reside in several attribute fields as well. For

an example, name "Levenshtein" can b e a name of an author

as well as a part of an article titled such as "Levenshtein

Distance". Heterogeneity caused by same entity identified by

different names are not going to be resolved in this approach.

Because the original format which the data are stored at each

data store is required for generating SPARQL queries and

retrieve answers. The ambiguity of same literal reside under

different fields (author, title etc.) are resolved by introducing

specific keyword fields to the user.

 Architecture of our proposed approach is depicted in Fig.

1. It contains three main components namely query validator

which validates the user inserted query, keyword to attribute

mapper which identifies the elements in user query, their

relationships and how they can be related to existing data

elements in the federation. Final component is query converter

where the SPARQL queries are generated based on the

keyword queries entered by user. Each of these components is

discussed in upcoming sections.

Fig. 1 Architecture of the proposed approach

IV. QUERY VALIDATOR

This component is used for validating the format of input

keyword query. Keyword queries adhere to a defined format

are only focused in this methodology. Keyword queries of

proposed format are only expected by next steps in this

approach as well. Therefore, validating the input query

format is essential. A simple regular expression based lexical

Path Index Based Keywords to SPARQL Query Transformation for Semantic Data Federations 4

International Journal on Advances in ICT for Emerging Regions June 2016

analyzer and a parser is used for this purpose. Once the user

query is inserted, it is directed to the lexical analyzer for

tokenizing and removing unnecessary white spaces. If any

error occurred during this stage, the query will be rejected

and an error is displayed. If the query was accepted by the

lexical analyzer, a token steam is sent to the lexical parser. A

regular expression which defines the accepted format of user

query is included in the lexical parser. If the input query

matches the grammar rules, it is a valid query. Invalid queries

are notified as errors. Valid queries are stored as key-value

pairs and sent to the next component.

V. KEYWORD TO ATTRIBUTE MAPPER

Once the Query Validator sent a set of key - value pairs

based on the input user query, Keywords to Attribute Mapper

have several tasks to complete. They are as follows:

identifying the fields which user query consists of, retrieving

matching data source elements for user keywords from the

federation, retrieving vocabulary dependent terms for user

query’s variable fields from heterogeneous vocabularies in

the federation, clustering identified matching element

sequences for each data source based on the vocabulary they

belong to and finally ranking those clusters based on their

capability to answer the user query.

There are several sub tasks aligned with the

above list of tasks. In order to identify matching

elements for user keywords, this research proposes

maintaining pre-processed data as practiced by

several other existing solutions [1], [6], [8], [10],

[11]. With the pre-processed data, searching can be

done faster. Two types of pre-processed data are

proposed for this phase namely Attribute Mapper

and Attribute Index.

A. Attribute Mapper for Heterogeneity Resolution in the

Federation

Vocabulary level heterogeneity is a common

characteristic of RDF data source federations. Even in the

domain of academic publications, fields similar in meaning

are represented in different labels. For an example, ACM

RDF data source identifies publication title as "title" and

SWE DBLP identifies publication title as "label". However,

in order to identify that all those different labels means the

same entity, a mapping is required among those vocabularies.

Ontology alignment is a highly researched field which

can also be utilized for resolving vocabulary level

heterogeneity only. On the other hand, WordNet4 is a lexical

database created for English. It has categorized different

English words based on their similarities. Also, it keeps

details about the origin of words. For example, if we consider

the word, "author", we can retrieve that the parent class of

"author" is "person". Also if we input "author" and "editor",

we can retrieve the common word "person" which can be

used to identify both of them. Hyponym and hypernym

relations indicated in WordNet serve this purpose. These are

two options for resolving vocabulary level heterogeneity.

When considering the terms in vocabularies, it was identified

4 http://wordnet.princeton.edu/

that some terms which are defined as concepts on some

vocabularies are defined as properties on other vocabularies

in the federation. Therefore, both concept level and property

level alignments are required in this approach. Alignment

API [12] was selected for this task as it has capability of

property and concept alignment. Its accuracy is better than

other approaches [13], [14] and it also has the capability of

integrating WordNet which provides added advantage.

Alignment API [12] is only capable of aligning two

vocabularies at a time. Therefore, this research uses a semi-

automated approach to resolve vocabulary level

heterogeneity among all the vocabularies in the federation

and construct the Attribute Mapper. First, the required

concepts for the specified scope are manually identified from

a single vocabulary. For an example, if DBLP is considered,

"label" is the predicate used to identify publication title,

"author" is the predicate used for indicating author list of a

particular publication etc. Then all other vocabularies in the

federation are aligned with DBLP source using Alignment

API. For an example align vocabulary of ACM, vocabulary

of CiteSeer with DBLP each at a time. Once all the output

alignment details are received, only the alignment of all

vocabularies gets started. All the entities (classes, attributes

etc.) aligned with previously identified concepts of DBLP are

clustered together along with their data source details. This

helps to extract different terms used by heterogeneous

sources to identify same entity in the federation.

B. Attribute Index for Mapping Keywords with Data

Elements in the Federation

Matching data elements for user keywords must be

identified as the first step of keyword to SPARQL conversion.

Commonly used keyword index approach [5], [15] is decided

to use for this phase with several modifications.

Definition 1: A keyword index is a keyword to element

map which returns a set of matching elements to a keyword.

RDF is a graph structured data store. Data vocabulary

elements are represented by vertices and edges of a graph.

Definition 2: A RDF graph g is a tuple (V, L, E) where

• V is a finite set of vertices as the union VE U VV with

entity vertices VE and value vertices VV

• L is a finite set of edge labels as the union LR U LA

with relation labels LR and attribute labels LA

• E is a finite set of edges of the form e(v1,v2) with

v1,v2 ϵ V and e ϵ E. Following types of edges can be

defined:

o e ϵ LA (attribute edge) if and only if v1ϵ VE and v2

ϵVV

o e ϵ LR (relation edge) if and only if v1,v2ϵ VE

o type is a special relation which indicates the

membership of an entity to a particular class

 Most of the available approaches have indexed both V and

L in their keyword index, arguing that keywords can occur in

V and L both. But Cappellari et al. [7] mentions that

keywords can mostly reside on sinks. Sink is a node in RDF

graph which does not have any outgoing edges from it. They

have introduced a term called source to identify vertices

which have no incoming edges. So they have only indexed

sink vertices of a RDF graph. We also have decided to follow

this approach and generate the index only for sink vertices.

We are adopting the data structure used by Tran et al. [8] to

5 Thilini Cooray, Gihan Wikramanayake

June 2016 International Journal on Advances in ICT for Emerging Regions

store additional details about indexed elements. Additional

details are the set of adjacent edges directed from one-edge

distant vertices to this element, set of primary edges which

are the adjacent edges to a source which this element belongs

to, type of the source VE to which this sink VV belongs to and

data source identifier. This additional information is required

efficiently identifying suitable sub-graphs for query

generation. Apache Lucene5 document index was utilized for

building our Attribute Index.

 In most data sources, sink elements do not reside in one

edge distance from its source vertex. For an example if we

consider a publication, it can have many authors. In such

cases, a collection approach is required to store multiple

authors. So the adjacent edge to the element may not be the

adjacent edge to the source. Adjacent edge to the source is

the one which defines the relationship not the adjacent edge

to the sink. Situations where these two are different have not

been addressed by previous approaches. Therefore, this

research proposes a primary edge to be stored as well as the

adjacent edge. Primary edge is the adjacent edge of the

source to which element connects. There can be either no

other edges between primary edge and adjacent edge on the

path or both adjacent and primary edges can be same or

several edges can occur between primary and adjacent edge.

But they are not subject to store in the data

structure.

 Proposed approach uses same keyword index to store all

sink values from all the data sources in the federation. If

same element resides in two or more datasets, several data

structures for each source are created and stored under the

same key. Only the sink element labels get indexed while all

the information resides in data structure gets mapped to

indexed element. Therefore, it takes a less amount of space to

store this keyword index than other methods’ indexes who

index all the vertex data.

 Fig. 2 shows a sample data graph fragment of DBLP.

“James Peter” is a source as it does not have any outgoing

edges. Paper-Peter95 is its source. Source does not have any

incoming edges. The data structure which returns from the

Attribute Index for the term “James Peter” is [James Peter

(node label), ns#1(adjacent edge), author (primary edge),

Book Chapter (type of source), DBLP (data source id)].

 Once Attribute Mapper and Attribute index are ready,

real time processing begins. Using the key-value pairs

received from query validator, this component identifies what

are the variable fields of the keyword query. Those variables

are sent to Attribute Mapper and retrieve vocabulary

dependent terms for them. Condition values of the keyword

query are sent to Attribute Index and receive matches.

5 http://lucene.apache.org/

Fig. 2. Data graph fragment of DBLP

 Primary edges of those index results are

matched with attribute mapper to make sure we

receive the values with the required attribute we

want. Now cluster those results based on the data

source identifier. Then we employ a data source

ranking approach to decide which source is most

capable of answering user query. In a non-

distributed environment, it is most advisable to

generate single query, process and send its results

to users without keeping user waits until all queries

for the entire federation are generated because

users need efficiency. If a data source has matching

elements for all the user keywords while another

source only have matching elements for some of

the user keywords, the former data source gets a

high priority when query converting. Those ranked

data sources are then sent to Query Converter

component.

 Following table shows sample tuples of DBLP

and ACM for the query

“publication:?,author:James,year:1995”. Variable

field of the query is “publication”. That was sent to

attribute mapper and “label” and “has-title” was

retrieved for DBLP and ACM respectively. When

consider condition values, DBLP has matching

elements for both “James” and “1995” while ACM

has matching elements only for “James”. Therefore

it is clearly understood that there is a more

possibility of retrieving accurate results from

DBLP them ACM for this query. Therefore DBLP

gets higher priority.

TABLE I

OUTPUT TUPLES FROM KEYWORD TO ATTRIBUTE MAPPER

Source Keyword Primary

Edge

Adjacen

t Edge

Source

Type

DBLP James Peter author ns#1 Book

Chapter

1995 year year Book

Chapter

Variable field : publication , vocabulary dependent

value : label

Path Index Based Keywords to SPARQL Query Transformation for Semantic Data Federations 6

International Journal on Advances in ICT for Emerging Regions June 2016

ACM James

McClelland

has-author full-

name

Article

Reference

Variable field : publication , vocabulary dependent

value : has-title

VI. QUERY CONVERTER

This component is used to identify the most suitable sub-

graph which can connect identified keyword elements from

the previous component and generate SPARQL queries based

on identified sub-graphs. SPARQL queries are generated by

identifying the format (template) of the sub-graphs which

consist of the answers for the query. Vertices of the target sub

graph were found by Keyword to Attribute Mapper. However,

edges which connect those vertices were not provided. Hence

Query converter first has to seek for a method for identifying

relationships among sent elements by previous component.

Many approaches [6], [8], [9] try to find suitable sub-graphs

by graph traversing at real time, which is highly time

consuming. A path store [7] is utilized in this research for

sub-graph identification because it has totally eliminated real

time graph traversal.

Objective of Path Index is to keep records of how vertices

(classes, property values and literals of RDF graphs) are

connected to each other prior to actual query processing starts.

Paths are defined as the route from given element to another

in RDF graph. Efficiency of query processing improves by

utilizing those pre-processed data. Therefore, the cost

required for real time graph traversal reduces heavily. Those

path data are stored in a relational database.

Sources and Sinks are the main elements required for

defining paths. Full path is defined by a route from a source

to a sink. Template of a path is retrieved by replacing vertices

of a path by wild cards. Templates indicate the relationship

among vertices. When considering the SPARQL query

generation context, those templates are the components

which we need to find for generating queries. When

considering a SPARQL query, intermediate nodes of a path is

always indicated by variables. Therefore, we can easily

generate queries by utilizing suitable templates.

Database schema presented in Path Index mainly consists

of four main relations; Node, Template, Path and PathNode.

Path Index assumes that user queries targets only sinks [7].

Therefore, only data about sinks are stored in Node table.

Path table keeps data about all the unique paths from sources

to sinks. Each tuple consists of path is, template id, length of

the path and id of the final node of the path. PathNode table

keeps track of which node resides in which position of a path.

Index Organized Tables concept is used for indexing these

tables.

Database schema presented in Path Index was adopted for

this research due to its simplicity and usefulness for

generating queries. Cappellari et al. [7] has presented a

breadth first search based approach for exploring the RDF

graph when populating tables with data in the database. This

approach stores intermediate paths as well as full paths in

Path table. When utilizing Path Index for SPARQL query

generation, it was decided that storing full-paths are only

required. Since the main intention of using this index is to

identify relationships among keyword elements, sources can

be considered as most promising connecting elements which

can reach many other elements quickly once matching

elements are found from sinks. Therefore sources can behave

as local connecting points when we are trying to find the best

sub-graph to connect keyword elements.

A. Full-path Identification

Cappellari et al. [7] have presented a breadth-first search

based algorithm for capturing full-paths in a given RDF

dataset. However that algorithm stores full paths as well as

partial paths which requires huge unnecessary space.

Therefore a depth-first search based algorithm was proposes

in this methodology which can identify full-paths accurately

avoiding unnecessary space wastage caused by the original

algorithm. Proposed algorithm explores the RDF graph in

Depth First manner. Sources available for each dataset are

identified and depth first traversal starts from each source. It

searches the entire RDF graph until it meets all the sinks

which can be reached by the current source. Algorithm

locally creates an n-ary tree considering current source as the

root. All the triples whose subject is root are considered as

the branches of the tree. If the object of each triple has

become a subject in another triple, those branches grow

accordingly. Sink nodes never become a subject of a triple so

occur as leaves of the tree. Proposed algorithm for generating

path tree for each source is shown below.

Algorithm 1 DFS based graph exploration for full-path

capturing

Input : RDF triple dataset DATA, path tree TREE, parent node P,

matching triple set TRIPLES

1. for each triple t in TRIPLES do

2. add t to node P on TREE

3. var newtriples = get triples from

4. DATA (subject = t.object)

5. if (newtriples.count > 0) then

6. DFSbasedgraphtraversal (DATA,

TREE,t.object,newtriples)

7. end if

8. end for

 Once a source-tree is generated, a method is required to

identify all the full paths in the tree because those are needed

to be stored in Path Index. Since tree nodes have only a single

parent, full-paths can be captured by recursively traversing

from each leaf to root. Proposed algorithm is shown below.

Algorithm 2 Complete algorithm for Path Index building

Input : RDF triple dataset DATA, path tree TREE, source list

SOURCES

1. for each source s in SOURCES do

2. var triples = get triples from DATA (subject = s)

3. var TREE = generate tree (root = s)

4. Algorithm 1 (DATA,TREE,s,triples)

5. var pathlist

6. var leaves = TREE.leaves

7. for each leaf l in leaves do

8. var leafnode = leaf

9. var path

10. while (leafnode TREE.root) do

11. add leafnode to path

12. leafnode = leafnode.parent

13. end while

14. add path to pathlist

15. end for

16. store pathlist in PathIndex

17. end for

7 Thilini Cooray, Gihan Wikramanayake

June 2016 International Journal on Advances in ICT for Emerging Regions

B. Resolving Cycles Caused by Inverse Properties

Inverse relationships are a main reason for occurring

cycles in RDF graphs. Suppose there is a triple is a RDF

graph whose subject is S, predicate is P, object is O. If there

exists another triple in the same RDF graph whose subject is

O, predicate is P’ and object is S, P and P’ has an inverse

relationship.

 Both triples connected by an inverse

relationship contains same amount of information.

Therefore removing one does not cause any

information loss in the RDF graph. A popularity

based approach is used for filtering the most

appropriate triple. Popularity is measured by the

number of unique predicates each subject has.

Higher the number of unique predicates, higher the

amount of information it has access to. Proposed

algorithm for inverse property based cycle

resolution is shown in Algorithm 3.

Algorithm 3 Resolution for inverse property based cycles in

graphs

Input : RDF triple dataset DATA

Output : Cycle resolved dataset DATA

Initialisation : Inverse statement list inverselist

1. for each triple t in DATA do

2. if (inverselist.notcontain(t)) then

3. var inversetriples = get triples

(subject=t.object,object=t.subject)

4. for each inverse i in inversetriples do

5. var subjectpopularity = get unique

predicate count (i.subject)

6. var objectpopularity = get unique

predicate count (i.object)

7. if (subjectpopularity > objectpopularity)

then

8. add t to inverselist

9. remove t from DATA

10. else

11. add i to inverselist

12. remove i from DATA

13. end if

14. end for
15. end if

16. end for

C. Path Index Based Sub-graph Identification and SPARQL

Query Generation

Once Path Index generated, SPARQL query generation

should be done in real time. Once mappings are retrieved,

Path Index is queried to retrieve paths whose final node is the

value of the mapping received from Attribute Index. There

can be several sub-graphs in a data source which can connect

those keyword elements. But they all use the same schema

(vocabulary) Consider a situation in DBLP where 3 sub-

graphs exist which connects author James, year 1995 with 3

publications. Those publications become answers as

publication was the variable in user query. If all the vertices

of each sub-graph are replaced with wild cards, the result

graph is totally similar. That graph is the sub-graph which is

needed to traverse to get answers. That is the sub-graph

which we should convert to SPARQL syntax for generating

the query. This sub-graph with wildcards is known as

template graph. . For an example, template of full-path

“PaperPerter95-year-1995” is “#-year-#”. When converting a

sub-graph to SPARQL syntax, we have to replace the vertices

by variables.

Several different templates can be received as matching

paths when same keywords repeat under different concepts in

the vocabulary. For an example, consider person "James". He

can be a program committee member of one conference in

1995 while being an author of publications. Since templates

were extracted only considering full-paths whose sink nodes

are keywords without focusing on their relationship with

variable field, templates matching for both scenarios will

occur. If results were generated for both these template

graphs, overall relevancy of results will become low.

Therefore a filtering process is required. Additional

information stored in index documents comes to use at this

situation. Filtering process considers templates which

matches with primary and adjacent edges keyword elements

and ignore others. If there are several results on this approach,

shortest template will be selected as the suitable sub-graph as

lesser the length of the path, faster the query processor can

reach it and output results. Tran et al. [8] has also mentioned

path length as a common matrix used by many graph

traversal approaches to rank selected sub-graphs. Lesser the

path length, there is a high probability that it would reduce

the overall size of the sub-graph it resides in.

Next this proposed methodology looks for extracting

suitable templates for variable fields in the user query.

Shortest template which contains the vocabulary specific

properties of the variable field is selected as the template. A

sub-graph which can connect all the keywords is required for

generating a SPARQL query. Now paths for each field have

been retrieved, finding connecting elements is required to

generate a sub-graph using these paths. Details stored in Path

Index are used for finding connecting elements. Sources of

the data sets were identified while building Path Index.

Sources are operating as centre nodes to connect all the

property values of the source together. Sources mostly

represent the main focus of the vocabulary. For example, if

DBLP and ACM vocabularies are considered, publication is

their main focus. All the attributes related to publication are

defined as properties. Therefore sources can be identified as a

potential element for connecting the paths for generating a

possible sub-graph. SPARQL queries are generated based on

this argument. Following is a sample query generated for the

example keyword query “publication:?, author:James,

year:1995”..

If there are several matching elements for a single

keyword (Ex : Many different people with "James" as a part

of their name) or many different sub-graphs match for the

query, FILTER option of SPARQL is used in generated

queries. Following is an example is a scenario where there

are multiple authors named "James" available.

SELECT ?z

WHERE {

 ?x type Book Chapter .

 ?x label ?z .

 ?x year 1995.

 ?x author ?y. ?y ns#1 “James Peter”. }

Path Index Based Keywords to SPARQL Query Transformation for Semantic Data Federations 8

International Journal on Advances in ICT for Emerging Regions June 2016

VII. RESULTS

The Proposed approach was implemented using Java with

the support of Apache Jena Semantic Web library and Oracle

11g DBMS. Once a keyword query is inserted, it identifies

the data sources in the federation which can answer the

keyword query and transforms input query to vocabulary

dependent SPARQL queries to match with the data sources in

the federation.
Evaluation setup is as follows. A federation of 3

publication data sets were created. DBLP 6 RDF

dataset with 37446 triples, ACM7 RDF dataset with

63980 triples and Semantic Web Dog Food8 (SDF)

dataset with 37105 triples were used as test data.

Portions from DBLP and ACM data sets were used

because SDF data set was not large enough as them

and publication details between 1986 and 2005

were only assessed due to the availability of data

on all 3 data sets. These three sources were

selected based on following aspects.

Publishers of these data sets have exploited three

different ontologies (SWEtoDBLP, aktors and

SWRC ontologies respectively) for publishing

these data. Therefore schema level heterogeneity is

clearly showcased among the selected data sources.

RDF data are stored in graph structures. Therefore

problems in graph data handling also arise when

dealing with RDF data. Cycles are one such

problem. Here we selected two data sets with

cycles. ACM data set has cycles caused by the

subject of a triple has become its own object.

SWRC ontology is an integrated ontology of

several ontologies. Therefore it has inverse

relations. These inverse properties have introduced

cycles in SDF data set. These data sets are used to

experiment the proposed approach’s ability to deal

with common cyclic scenarios of RDF data. DBLP

data set does not consist of cycles. However,

specialty with this data set is that it consists of

blank nodes. Blank nodes are anonymous nodes in

a RDF graph. These can be used to group sub-

properties of an instance. Likewise, data sets which

exhibit different characteristics which covers most

of the common characteristics of RDF graphs are

6 http://lsdis.cs.uga.edu/semdis/swetodblp/
7 http://datahub.io/dataset/rkb-explorer-acm
8 http://data.semanticweb.org/

used for the experiment in order to show the

generalizability of this approach for RDF

federations.

Experiments were conducted on a machine with

AMD V120 processor of 2.2 GHz and 4GB RAM.

A test keyword query set of 10 queries were

created by considering all the possible

combinations of the three keyword fields (author,

year, publication) we selected for academic

publication data. Table II shows test query set.

TABLE III

TEST QUERY SET

 Keyword query

Q1 publication : consistency , author : ?

Q2 publication : distributed , year : ?

Q3 author : sylvia , year : ?

Q4 author : andrew , publication : ?

Q5 year : 1986 , author : ?

Q6 year : 1988 , publication : ?

Q7 publication : multimedia , author : daniel , year : ?

Q8 publication : concurrent , year : 1990 , author : ?

Q9 author : david , year : 2004 , publication : ?

Q10 publication : protocol , author : ? , year : ?

A. Quality Evaluation of the Federation

The first evaluation criterion was to evaluate whether our

proposed approach actually carries out its intended task of

correctly translating user keyword queries to SPARQL.

Measurements were taken by considering the relevancy of the

retrieved results by executing the generated queries. Since

main intention of this approach is to give general users more

relevant and accurate results using the privileges of Semantic

web, quality of results were measured using following

measurements. Quality of the generated SPARQL queries

were evaluated by measuring precision, recall and F-measure

of the results received for above mentioned test query set. F-

measure is a balanced measurement used to capture the

balance between precision and recall of each result set. This

measure was used as some results can be high in precision

but low in recall and vice versa. F-measure gives a balanced

score in such situations. Gold standard results were obtained

by running SQL queries on Path Index of the data sources

and manual evaluation on the raw RDF data sets. Fig. 3

shows the results graphically.

Fig. 3. Quality evaluation of the federation

SELECT ?z

WHERE {

 ?x type Book Chapter .

 ?x label ?z .
 ?x year 1995.

 ?x author ?y.

 ? y n s # 1 ? a .
 F I L T E R (r e g e x (s t r (? a) , " J a m e s ")) .

 }

9 Thilini Cooray, Gihan Wikramanayake

June 2016 International Journal on Advances in ICT for Emerging Regions

 Overall precision has an average of 0.98 and overall

recall has an average of 0.9. Based on the precision results,

proposed approach is capable of generating queries which

can give more accurate results. However, a loss of recall was

detected compared to precision. This was caused by the

decision made about finding the connecting elements of sub-

graphs. The source node was selected as a connecting

element and its type was decided by the type which has

maximum matching from the attribute index. Sometimes this

type did not match with the actual source of the paths which

were retrieved from the Path Index. It caused loss of results.

Another point was that the capability of a data source in

producing results were decided for a user query if that source

have matching elements for all the keywords in the query.

However there are situations which keyword element reside

in the RDF graph, but there is no a sub-graph which can

actually connect them all. In such situations generating a

query is wastage of effort.

 Then recall values were compared of each data source

with the recall of the federation. This evaluation was done to

identify whether there is a significant impact on the result by

processing the query over a federation rather than on an

individual data source. One of the objectives of transforming

a keyword query to SPARQL on a federation was to give a

more complete result set to the user. If a single source is

capable of giving the same result set, there is no requirement

of a federation. Recall is the measurement which indicates

the contribution of each source over gold standard result set.

Fig. 4 shows that federation gives more complete results over

individual sources. Therefore it can be shown that federation

approach is capable of producing more complete results than

any of the individual sources.

Fig. 4. Recall comparison of the federation

B. Performance Comparison for the Proposed Path Index

Based Approach

Performance evaluation was carried out after receiving

satisfying results for the quality of the proposed approach.

Prior to this research, all the presented approaches for this

task [8], [28] have either used online graph traversal

approach or natural language processing support for query

translation. Path index [7] was first suggested for keyword

searching. Its functionality was exploited for generating

SPARQL queries from keyword queries. An index based

approach was adopted related to this method used by Tran et

al. [8] Both these approaches and SearchWeb have utilized a

keyword index for mapping keywords with data source

elements. However proposed method used a path index based

approach for identifying substructures which can connect

keyword elements while they followed a real time graph

traversal mechanism.

The graph exploration and top-k query calculation

approach presented in [8], performs better compared to other

available methods for finding sub-graphs such as backward

search [9], bidirectional search [6], breadth first search and

depth first search. Tran et al. [8] has shown in their

evaluation that query generating time has achieved a

comparable decrement by using their graph exploration

mechanism. Natural language based approach suggested in

[28], is totally deviated from the proposed approach. The

intention of using a path index based approach for query

generation was to experiment whether it can achieve a

performance gain in query generation time by pushing graph

traversing to the pre-processing stage. Therefore, query

generation time of proposed approach against SearchWeb

approach presented by Tran et al. [8] was evaluated.

Time taken to identify the most suitable query

substructure which can be used for query generation as our

matrix of performance was measured. Once it is identified,

either proposed approach or their approach could have been

used for translating the substructure to match with SPARQL

query syntax. Time taken by SearchWeb approach to

generate top-1 query was only considered since proposed

approach only output a single query per data source. Query

generation time only for ACM data source was compared at

this section as SearchWeb method has only suggested for

query generating for a single data source. In the next section,

the performance comparison when it comes to federation

scenario will be demonstrated. Fig. 5 shows the performance

comparison.

Fig. 5. SearchWeb Vs. Proposed approach for a single source

 Figure illustrates that proposed approach has a significant

performance gain compared with SearchWeb suggested by

Tran et al. [8] for the tested query set. Since search web has

already been outperformed other related methods, we only

evaluated against SearchWeb. Main reason behind the high

query time for search performance is its real time graph

traversing. Even though SearchWeb doesn’t do a full graph

traversal in query generation time, it uses graph traversal.

First, they create a graph summary by extracting the class

vertices and entity vertices from the original RDF graph. This

summary graph behaves as the schema. Once the matching

elements are retrieved using the keyword index, SearchWeb

embeds those matching elements to the summary graph while

exploiting the "adjacent edge" property in the retrieved index

records. Therefore, more the keyword matching elements,

bigger the summary graph will be.

Path Index Based Keywords to SPARQL Query Transformation for Semantic Data Federations 10

International Journal on Advances in ICT for Emerging Regions June 2016

 Keyword elements matching for "distributed" in Q2 is

around 50 and "andrew" in Q4 is around 30. Once those 30

vertices are added to the summary graph, it gets bigger.

SearchWeb traverse through all the possible starting from the

shortest once generated the augmented summary graph by

adding those matching elements. This is done to retrieve

elements which can connect all keyword elements. Once a

connecting element is found, SearchWeb considers all the

path combinations among keyword elements even they have

same adjacent edge to get the shortest path. Bigger the graph,

higher the number of combinations will be. This leads to high

query generation time.

 Q7, Q8 and Q9 have two conditional keywords in the

query. Therefore augmented graph of SearchWeb becomes

bigger. Number of possible paths among elements also

increases drastically. That is the reason for the huge query

generating time.

 In comparison, proposed approach shows a huge

performance gain as there is no real time graph traversal in it.

No matter how much matching elements are output from the

keyword index, if they have same template, all of them are

considered as a single element from template’s point of view.

C. Performance Comparison for the Federation

Query generation times for the entire federation. Proposed

approach is capable of generating SPARQL queries to all the

sources in the federation in one go. However SearchWeb can

only generate a SPARQL query for one source at a time.

Therefore queries to all the sources in the federation were

repeatedly generated and got the total time for the

comparison. A huge performance gain was retrieved by this

proposed approach this time as well. This showed that real

time graph traversal for SPARQL query generation and

keyword searching is highly inefficient when dealing with

huge data sources. Proposed approach is the first research

which utilized Path Index [7] for SPARQL query generation.

Satisfying results were obtained on its performance. Fig. 6

shows performance comparison for the federation.

Fig. 6. Performance comparison for the federation

D. Proposed Federation Approach Vs. Digital Libraries

The main reason for emerging Semantic Web concept

over Web of Data is ability of Semantic web to extract the

meaning and relationships of data elements and exploiting

them forgiving more meaningful and relevant results for user

queries.

Once after comparing the performance of the proposed

approach, this section focused on evaluating this aspect by

running the same set of user queries on both digital libraries

and proposed semantic web approach. Three digital libraries

were selected for this evaluation. DBLP, ACM and Semantic

Web Dog Food data dumps were used for sample federation

in this research. Therefore DBLP digital library 9 , ACM

digital library 10 and Semantic web 11 online

data store were selected as test digital libraries for this

evaluation criterion. Google Scholar4 was not used for this

evaluation as it consists of publications from many sources,

not only from above three.

Among these three digital libraries, DBLP and ACM only

have advanced search capabilities. Semantic Web Dog Food

website doesn’t have an advanced search capability.

Therefore, Semantic Web digital library was excluded from

evaluation. When consider the query executable ability of

digital libraries compared to proposed semantic web

federated approach, proposed approach was capable of

executing all the test queries. This means the proposed

approach was capable of executing any combination of target

query fields (publication title, author name, published year).

In contrast, digital libraries were mostly capable of providing

direct answers when only question needs publication titles as

results.

For an example, consider Q4 and Q6. They ask for the

paper titles authored by author named "Andrew" and paper

titles published in year 1988. In Q9 user requests titles of

publications authored by "David" in 2004. DBLP and ACM

were able to answer those three queries correctly but

Semantic web search was not advanced enough to directly

provide answers to match with those conditions.

When it comes to queries like Q1, Q2, Q3, Q5, Q7, Q8

and Q10, those queries does not request publication titles. For

an example, Q1 wants all the author names publishes papers

titles with "consistency". Q3 wants a list of years which

author "Sylvia" has publications. Digital libraries were not

capable of providing either an author name list or year list as

answers for these queries. They provided a list of

publications with word "consistency" for Q1. By manually

extracting only their author names could be retrieved.

Similarly for Q3, a publication list was received which were

authored by "Sylvia". Their years needed to be manually

extracted. Years were easier to be captured in DBLP while

author list could be easily received with filtering in ACM. In

comparison, proposed semantic web approach was capable of

providing direct answers for all those queries as well. Fig. 7

shows comparison among F-measures of DBLP and ACM

digital libraries with proposed federated approach.

Fig. 7 Quality comparison of Digital libraries vs. Proposed Approach

9 http://dblp.uni-trier.de/
10 http://dl.acm.org/
11 http://data.semanticweb.org/

11 Thilini Cooray, Gihan Wikramanayake

June 2016 International Journal on Advances in ICT for Emerging Regions

This shows that our Semantic Web based

federation approach is capable of giving highly

relevant results for user queries than existing

keyword matching digital libraries.
Google Scholar12 follows a non- semantic web approach

for combining all those results. However it also cannot

answer queries like Q1, Q2 and Q5 directly. It also only

focuses on filtering publications. If this proposed approach

can be applied on all the publication sources, It could have

performed better in answering all the publication related

queries no matter whether it is about an author, publication,

year or venue. This clearly exhibits the usefulness of

semantic web and level of accuracy which can be gained

from executing SPARQL queries over keyword based queries.
In queries like Q1, Q2 and Q5, user needs a list of authors

or years. Semantic web approach was capable of giving that

relevant information to user. However digital libraries were

unable to output the relevant results. Users have to manually

filter in order to retrieve the relevant result set. Therefore in

relevancy of results, proposed semantic web approach stays

in a high level compared to digital libraries including Google

Scholar.

VIII. DISCUSSIONS

A path index based keywords to SPARQL query

transformation mechanism which aims at RDF data source

federations is presented in this paper. A keyword index along

with ontology alignment based vocabulary level

heterogeneity resolution approach was suggested to identify

matching elements for user keywords. A Path Index based

approach was used for identifying suitable sub-graphs for

connecting keyword elements. Real time graph traversal is

one of the drawbacks of existing keyword query processing

approaches as they extremely effect the performance as RDF

data sources contains thousands to billions of nodes. This

approach has totally eliminated real time graph traversal for

query generation by generating an index for graph data in the

pre-processing stage. It showed a significant performance

gain over existing query generation approaches. Promising

level of results were achieved from the quality evaluation of

this approach and it was proved that federations are capable

of giving more complete results for a user query than just

querying from a single data source. This research also

emphasized that Semantic Web related keyword query

processing approaches can give more relevant results for user

queries than traditional keyword matching.
 This research can be further extended by

including capabilities for handling more relaxed

format queries on this approach. An approach

which can accurately decide the connecting

elements for the extracted paths from the Path

Index in order to generate sub-graphs can be used

to further enhance the accuracy of this approach. A

mechanism which can decide whether there is

actually a sub-graph existing for a given set of

keywords before generating the SPARQL query is

12 https://scholar.google.com/

needed to be merged with this approach in the

future. Also this research can be further extended

to generate SPARQL queries for Linked Data

sources by exploiting the Path Index. Map-reduce

based mechanisms can be used to enhance this

approach to function on distributed environments

which will improve the scalability of this approach.

ACKNOWLEDGMENT

We would like to thank Sarasi Lalithasena, PhD

candidate of Kno.e.sis Research Center, Wright

State University, USA, for her expert advice and

encouragement throughout this research.

REFERENCES

[1] Hristidis L. G. V. and Papakonstantinou Y. (2003). Efficient ir-style
keyword search over relational databases. VLDB, pp. 850–861.

[2] Hwang V. H. H. and Papakonstantinou Y. (2006). Objectrank: a system
for authority based search on database. SIGMOD Conference, pp. 796–
798.

[3] Liu W. M. F., Yu C. T., and Chowdhury A. (2006). Effective keyword
search in relational databases. SIGMOD Conference, pp. 563–574.

[4] Kimelfeld B. and Sagiv Y. (2006). Finding and approximating top-k
answers in keyword proximity search. PODS, pp. 173–182.

[5] Wang H. He, H., Yang J., and Yu P.S. (2007). BLINKS : Ranked
Keyword Searches on Graphs. Proceedings of the 2007 SIGMOD
International Conference on Management of Data, ACM.

[6] Kacholia S. C. S. S. R. D. V., Pandit S., and Karambelkar H., (2005).
Bidirectional expansion for keyword search on graph databases. VLDB,
pp. 505–516.

[7] Cappellari P., De Virgilio R., Maccioni A., and Roantree M. (2011). A
Path-Oriented RDF Index for Keyword Search Query Processing.
DEXA, pp. 366–380.

[8] Tran S. R. T., Wang H., and Cimiano P. (2009). Top-k exploration of
query candidates for efficient keyword search on graph-shaped (rdf)
data. ICDE,IEEE.

[9] Bhalotia C. N. S. C. G., Hulgeri A., and Sudarshan S. (2002). Keyword
searching and browsing in databases using banks. ICDE, pp. 431–440.

[10] Tran T. and Zhang L. (2013). Keyword Query Routing. IEEE
Transactions on Knowledge and Data Engineering, 1(2).

[11] Freitas A., Curry E., Oliveira J.G., and O’Riain S. (2011). a
Distributional Structured Semantic Space for Querying Rdf Graph
Data. International Journal of SemanticComputing, 05: 433–462.

[12] David F. S. J., Euzenat J., and dos Santos C. (2011). The Alignment
API 4.0. Semantic web journal, 2(1): 3–10.

[13] Jain A. K. P., Hitzler P., and Yeh P. (2010). Ontology alignment for
linked open data. The Semantic Web ISWC 2010, pp. 402–417,
Springer Berlin Heidelberg.

[14] Li Y. J., Tang J. and Luo Q. (2009). RiMOM: A dynamic multistrategy
ontology alignment framework. Knowledge and Data Engineering,
IEEE Transactions, 21: 1218–1232.

[15] Tran T., Wang H., and Haase P. (2009). Hermes : Data Web search on
a pay-as-you-go integration infrastructure. Web Semantics: Science,
Services and Agents on theWorld Wide Web, 7(3):189–203.

[16] Sheth A.P. and Larson J.A. (1990). Federated Database Systems for
Managing Distributed , Heterogeneous , and Autonomous Databases.
ACM Computing Surveys (CSUR), 22(3): 183–236.

[17] Makris K., Gioldasis N., and Bikakis N. (2010). Ontology Mapping
and SPARQL Rewriting for Querying Federated RDF Data Sources (
Short Paper). On the Move toMeaningful Internet Systems, OTM 2010,
pp. 1108–1117, Springer Berlin Heidelberg.

Path Index Based Keywords to SPARQL Query Transformation for Semantic Data Federations 12

International Journal on Advances in ICT for Emerging Regions June 2016

[18] Correndo G., Salvadores M., Millard I., Glaser H., and Shadbolt N.
(2010). SPARQL Query Rewriting for Implementing Data Integration
over Linked Data. Proceedings of the 2010 EDBT/ICDT Workshops, p.
4, ACM.

[19] Makris K., Bikakis N., Gioldasis N., and Christodoulakis S. (2012).
SPARQL-RW : Transparent Query Access over Mapped RDF Data
Sources. Proceedings of the 15th International Conference on
Extending Database Technology, no. c, pp. 610–613, ACM.

[20] Gunaratna S. K. and Sheth A. (2014). Alignment and dataset
identification of linked data in Semantic Web. Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery, 4: 139–151.

[21] David F. J. and Briand H. (2006). Matching directories and OWL
ontologies with AROMA. Proceedings of the 15 th ACM international

conference on Information and knowledge management, pp. 830–831,
ACM.

[22] Wikipedia, Breadth-first search,” 2002. [online],
http://en.wikipedia.org/wiki/Breadth-first_search (Accessed: 21 June
2014).

[23] Wikipedia, “Depth-first search,” 2002. [online],
http://en.wikipedia.org/wiki/Depth-first_search (Accessed: 21 June
2014).

[24] Florescu D. K. D. and Manolescu I. (2000). Integrating keyword search
into xml query processing. Computer Networks, 33(1-6): 119–135.

[25] Guo C. B. L., Shao F. and Shanmugasundaram J. (2003). Xrank:
Ranked keyword search over xml documents. SIGMOD Conference,
pp. 16–27.

[26] Yu B., Li G., Sollins K.R., and Tung A.K.H. (2007). Effective
Keyword-based Selection of Relational Databases. Proceedings of the
2007 ACM SIGMOD international conference on Management of data,
pp. 139–150, ACM.

[27] Vu Q.H., Ooi B.C., Papadias D., and Tung A.K.H. (2008). A Graph
Method for Keyword based Selection of the top-K Databases.
Proceedings of the 2008 ACM SIGMOD international conference on
Management of data, pp. 915–926, ACM.

[28] Unger C., Bühmann L., Lehmann J., Ngonga Ngomo A.C., Gerber D.,
and Cimiano P. (2012). Template-based Question Answering over RDF
Data. Proceedings of the 21st international conference on World Wide
Web, vol. ACM, pp. 639–648.

