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Abstract—Human Computer Interaction based Research has 

emerged in the early 1980s with the advent of computer 

technology. Human Motion Capture is the process of recording 

the movement of people. Among many kinds of human motion 

capture devises, Microsoft Kinect sensor and inertial sensors are 

most popular nowadays. In this paper we propose an efficient 

motion tracking mechanism to construct real time human 

skeleton animation using inertial sensors. We compare the 

results of our proposed method with the Microsoft Kinect sensor 

over the complicated motion tracking and joint position. During 

the experiment we observed that our results are much steady 

than Microsoft Kinect results. Some motions like hand cross 

over or leg cross over, our method showed better results than 

Kinect because the Kinect may lose skeleton of the blocked 

parts. On the other hand, since we use radio frequency inertial 

sensors, our method has a larger working area than Kinect. 

 
Keywords—Human Motion Capture (HMC), inertial sensors, 

motion tacking, skeleton animation. 

I. INTRODUCTION 
uman Computer Interaction (HCI) is an interaction 
interface between human and computers. With the 

growth of computing capability and the maturity of 
development of electronic devices, HCI has gained 
muchattention in research and industrial fields and became 
extensively applied in sports, special effects, user interface, 
training, rehabilitation and computer animation for movies, 
and video games. Hadjidj et al. used wireless sensor networks 
for rehabilitation [1]. The data-driven system introduced by 
Kurakin et al. is capable of automatic hand gesture 
recognition in real-time using a commodity depth camera [2]. 
During the last decade, micro sensors have proven to be a 
good alternative to traditional optical motion capture system, 
because their low-cost and self-contained nature. Real-time 
inertial tracking of human motion requires attaching inertial 
sensors to the major segments of human body. Shiratori et al. 
presented the theory and practice of using body-mounted 
cameras to reconstruct the motion of a subject and show 
results in settings where capture would be difficult or 
impossible with traditional motion capture systems[3]. 
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Slyper and Hodgins created a performance animation 
system that leverages the power of low-cost accelerometers 
[4]. Even though their setup based on upper body suit, 
another study contributed their research by introducing a 
novel framework for generating full-body animations 
controlled by only four 3D accelerometers that are attached to 
the extremities of a human actor [5]. Favre et al.hasproposed 
a new calibration procedure adapted for the joint coordinate 
system (JCS), which required only inertial measurement units 
(IMUs) data[6]. Another study presented an Extended 
Kalman Filter for fusion of inertial and magnetic sensing that 
is used to estimate relative positions and orientations [7]. The 
study of Altun et al. provided different techniques of 
classifying human activities that are performed using body-
worn miniature inertial and magnetic sensors[8]. 

In this paper, we introduce a wearable real-time human 
motion capture system using inertial sensors. A Kalman filter 
is applied to integrate the output of sensors data. Then we 
compare our position and tracking information with 
Microsoft Kinect sensor. 

The rest of this paper is organized as follows. In Section II 
related work in inertial sensor human motion tracking and 
gait analysis is discussed. The proposed method is explained 
in section III. Section IVdiscusses results comparing with 
Kinect. Conclusion and future work is presented insection V. 

II. RELATED WORK 

A. Inertial Sensor Based Motion Capture 
Inertial sensors can offer an accurate and reliable method 

to study human motion, however the degree of accuracy and 
reliability is site and task specific [9].Most inertial systems 
use gyroscopes to measure rotational rates. Thus, inertial 
tracking system has attracted many interests [9-11]. Raptis et 
al. present a real-time gesture classification system for 
skeleton wireframe motion. Its key components include the 
design of an angular representation of the skeleton[12]. 

B. Kinematics 
We used Euler angle to represent each segments rotation 

of a human skeleton. Human body is comprised of 14 
segments, linked by 15 joints. We considered rotation 
information to determine the position and orientation of joints. 
For the relative transfer movement between father and child 
joint, we have used forward kinematics and inverse 
kinematics as shown in Figure 1. If used only forward 
kinematics, the model is fixed at the centre joint of  the 
human model. Joint position of father can be calculated using 
position of child joints and oriented vector in inverse 
kinematics. 

The kinematics equations for the series chain of a robot are 
obtained using a rigid transformation [Z] to characterize the 
relative movement allowed at each joint and separate rigid 
transformation [X] to define the dimensions of each link [13]. 
For a serial open chain, the result is a sequence of rigid 

H 
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(a) 

 
(b) 

transformations alternating joint and link transformations 
from the base of the chain to its end link. A chain of n links 
connected in series has the kinematic equations, 

 
 [T]=[Z1][X1][Z2][X2]…[Zn][Xn], (1) 

 
where [T] is the transformation locating the end-link. Notice 
that the chain includes a 0th link consisting of the ground 
frame to which it is attached. These equations are called the 
forward kinematics equations of the serial chain [13]. 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Kinematics[14] (a) Forward kinematics, (b) inverse kinematics  

C. Kalman Filter 
The algorithm works under two steps and in the prediction 

step, the Kalman filter produces estimates of the current state 
variables, along with their uncertainties. Once the outcome of 
the next measurement is observed, these estimates are 
updated using a weighted average The objective of Kalman 
filter is to estimate the state of a linear system, by assuming 
the true state at time k is evolved from the state at (k-1) 
according to, 

 
 wBFX kk kUkX kk


1

, (2) 

 
where, Fk is the state transition model which is applied to the 
previous state Xk−1and input values to the new state value .In 
our experiments, we have set this value as 1. 

Bkis the control input model which is applied to the control 
vector and Uk, wk is the process noise which is assumed to be 
drawn from a zero mean multivariate normal distribution 
with covariance Qk;wk∼N(0,Qk)[15]. At time k an observation 
(or measurement) Zk of the true state Xk is made according to, 
 VHz kk kXk

 , (3) 

 
where,Hk is the observation model which maps the true state 
space into the observed space and Vk is the observation noise 
which is assumed to be zero mean Gaussian white noise with 
covariance Rk;Vk∼N(0,Rk) [15]. The initial state, and the 
noise vectors at each step {x0, w1, ..., wk, v1, ..., vk} are all 
assumed to be mutually independent [15]. 
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(4) 

 PHKP kkkk )1(  . (5) 
 
The Kalman filter produces an optimal state estimate by 

recursively updating the system state and the estimation error 
covariance, Pk. This estimation error covariance is used for 
calculating the optimal Kalman gain, Kk. That has been used 
in (4), estimating the further state with input data. R is a 
covariance which can be define by user. Finally updated state 
estimate Pk is again using updated Kk[15]. 

III. PROPOSED METHOD 

A. System Overview 
The system use sensors to capture motion information of 

human. First, denoising and processing is conducted to 
correct the errors and compensate for the disturbances and 
then display the real-time motion of human. 

 

 

Fig. 2 Hardware design 

As shown in the Hardware design diagram in Figure 2, 
inertial sensors connect Micro Centre Unit (MCU) using 
nRF24L01 wireless sensors. nRF24L01 is a highly integrated, 
ultra-low power 2Mbps RF transceiver IC for the 2.4GHz 
band. Transmitting of float data is not so easy by using 
nRF24L01 or Bluetooth as the communication of both 2 
sensors are using byte. MCU is gathered the inertial sensor 
data, then use nRF24L01 for transmitting data to computer. 
For the first time, we wanted to use one sever of nRF24L01. 
But, since we had 5 clients the communication with those 
clients reduced the frequency of data. Even the gathering 
frequency is fast, it will be 5 times slower. Therefore, have to 
used 5 independent severs for 5 independent clients.  

Three kinds of nodes; centre of gravity (COG), joint and 
segment used to construct virtual skeleton model. The COG 
is the centre point of the human model; at the same time it is 
also the root joint of human skeleton model. Segment is the 
component unit of the human skeleton model, which 
describes each part of the model. The COG is also the most 
important during estimation of human motion. As it is also a 
joint, but this joint is the centre of other joints, which is the 
coordinate origin of all the joints. When we have detected 
which leg is support and which leg is winging, we can 
calculate the position of the COG by using inverse kinematics. 
In this study we have constructed a human model containing 
14 segments and 15 joints. 
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(a) 

 
(b) 

 
(a) 

 
(b) 

 
Fig. 3 Model construction and overview of the system 

 
As shown in Figure 3, red points indicate sensors and blue 

points represent joints. We used 9 sensors attached on the 
major segments to record human motion. Also we have 
attached two sensors with the forearms and the upper arms to 
record the motion of elbow and shoulder joints. One sensor is 
attached on the head to track the head’s transfer. The chest 
has one sensor to describe the body’s movement. For each leg, 
we have attached two sensors at thigh and calf to record the 
knee joints and ankle joints’ motion. 

B. Process of Motion 
Euler angles represent three elemental rotations about the 

axes of the coordinate system. For instance, a first rotation 
about z by an angle α, a second about x by an angle β, and 
third again about z, by an angle γ (Figure 4 (a)). The axes of 
the original frame are denoted as x, y, z and the axes of the 
rotated frame are denoted as X, Y, Z. The line of nodes (N) is 
defined as the intersection of the xy and the XY coordinate 
planes. In other words, it is a line passing through the origin 
of both frames, and perpendicular to the zZplane, on which 
both z and Z lie, shown as Figure 4 (b). The three Euler 
angles are defined as: α (or Φ) is the angle between the x axis 
and the N axis, β (or Θ) is the angle between the z axis and 
the Z axis, and γ (or Ψ) is the angle between the N axis and 
the X axis. This implies that: α, β, γ represent rotations 
around the z axis, N axis and Z axis respectively. 

Most of the pedometers demonstrate an acceptable level of 
accuracy and reliability in step-count measurement [16]. 
There are plenty of studies which examined the accuracy, 
reliability, and validity of using pedometers [17-20]. Hasson 
et al. proposed first validation study of examining pedometer 
performance using a variable-speed condition[17]. 

All accelerometers provide basic step counting and activity 
counts. Important gait parameters can be measured using 
accelerometer to evaluate one’s risk of falling and mobility 
level [21]. Bamberg et al. proposed a gait analysis system 
using integrated wireless sensors[22]. Figure 5 describes the 
gait shoe system with labels indicating relevant anatomical 
markers. For the analysis of the kinematic motion of the foot, 
two dual axis accelerometers and three gyroscopes were 
placed at the back of the shoe, oriented such that the 
individual sensing axes were aligned along three 
perpendicular axes. 

 

 

Fig. 4 Euler angles (a). A rotation represented by Euler angles (α, β, γ), (b). 
the Euler angle theory 

Fig. 5 Schematic of the Gait Shoe system [22] 

Figure 6 shows the relevant coordinate systems used for 
the analysis of the data. The global reference frame of the 
room and the second corresponds to the local body frame, in 
which the sensors are mounted and collect their 
measurements. 
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Fig. 6 Schematic of the Gait Shoe system [22] 

C. Back Propagation Neural Network 
First, low resolution sensor data of 8 bits were used which 

provide 0 ~ 255 range. Hence, a small change of sensor data 
can result a high angle change in the calculation. To improve 
sensor resolution, used 16 bit which provides 0 ~ 65,535 
range. For more accurate results, we wanted to use Neural 
Network, to verifying our result with Kinect result. The 
above mentioned back propagation learning algorithm can be 
divided into two phases as propagation and weight update. 

 
Algorithm 1:BP Neural Network 
INPUT:  network weights (NW), 

Proposed method’s training pattern (TP) 
  Kinect’s pattern (KP), 
  input neural network (INN) 
OUTPUT: build neural network (BNN) 
BEGIN 
    initialize NW 
∀i∈TP 

prediction = output (INN, TP) 
actual        = output (INN, prediction) 
error          = prediction - actual 
∀NW from hidden to output layer 
compute ∆Wh 
∀NW from input to hidden layer 
compute ∆Wi 
update NW 

    IF (TP classified correctly or satisfied network 
performance) 

    RETURN BNN 
END 

D. Human Model Construction 
We take the right arm as an example to analyze the 

position and orientation of joints. The right arm is comprised 
of two body segments, i.e. right upper arm, right forearm. It 
is modeled as a kinematics chain of these two rigid segments 
linked by joints, i.e. right shoulder, right elbow and right 
wrist. The right shoulder is considered as the root joint in the 
right arm model. The skeleton model is established from the 
root joint downward to form a kinematics model with the 
joints obeying a Parent-Child relationship[23, 24]. We 
assume the length of each segment is fixed. The formula of 
obtaining joint position is, 
 Pelbow = Pshoulder + QupperarmVupperarmQ-1

upperarm. (6) 

Here, Pshoulder is the position of shoulder joint, Vupperarm is the 
initial vector of the upper arm segment which should be 
known before calculation. Qupperarm is the orientation of the 
upper arm segment represented by quaternion which rotate 

the vector of the human body in the global coordinate system. 
⊗ is the quaternion multiplication operator. 

We can easily get the wrist joints position after we have 
calculated the elbow joints position using the following 
formula, 

 1 forearmQforearmVforearmQelbowPwristP . (7) 

As we have just got Pelbow in (6), we can easily get Pwrist by 
taking (7) into (6). Applying this in to the whole human 
model, we can get the relation and position of each joint. In 
the human lower body is comprised of seven body segments, 
i.e. pelvis, left and right femurs, left and right tibias, and left 
and right feet. It is modeled as a kinematics chain of these 
seven rigid segments linked by joints, i.e. hips, knees, ankles 
and toes. The pelvis is considered the root joint in the model. 
The skeleton model is established from the root joint 
downward to form a kinematics model with the joints 
obeying a parent-child relationship. These rigid body 
segments can be represented by vectors. We build two sets of 
the lower body segments, namely, SL= {Pelvis, LelfFemur, 
LeftTibia, LeftFoot}andSR= {Pelvis, RightFemur, RightTibia, 
RightFoot}, also two sets of the joints JL= {Pelvis, LeftHip, 
LeftKnee, LeftAnkle, LeftToe}andJR= {Pelvis, RightHip, 
RightKnee, RightAnkle, RightToe}. In these sets, the 
preceding element is the parent. We take the right lower limb 
as an example to demonstrate how the position information is 
transmitted between lower body segments according to the 
segmental kinematics. From the proximal joint, e.g. root joint, 
to the distal joint, the position of the child joint can be 
calculated from its parent joints position using, 
 𝑃𝐽𝑅(𝑘),𝑡 = 𝑃𝐽𝑅(𝑘−1),𝑡 + 𝑄𝑆𝑅(𝑖),𝑡 ⊗𝑉𝑆𝑅(𝑖),0 ⊗𝑄𝑆𝑅(𝑖),𝑡

−1 , (8) 
 

where i = 1,2,3,4 and k = 2,3,4,5. From the distal joint, e.g. 
right toe, to the proximal joint, the position of the parent joint 
can be calculated from its child joints position using, 

 
 𝑃𝐽𝑅(𝑘−1),𝑡 = 𝑃𝐽𝑅(𝑘),𝑡 + 𝑄𝑆𝑅(𝑖),𝑡 ⊗𝑉𝑆𝑅(𝑖),0 ⊗𝑄𝑆𝑅(𝑖),𝑡

−1 , (9) 
 

where i = 4,3,2,1 and k = 5,4,3,2. 
 
Range of Motion (ROM) is the angle that a joint may 

normally travel. ROM can help us get the maximum angle of 
joints motion, including ante flexion, posterior extension, 
abduction and adduction. Therefore, we used ROM to limit 
skeleton model joints motion angle, calibrating the sensor 
captured data 

 
When taken right shoulder (RS) joint as an example, the 

range of motion of shoulder joint was 90° for ante flexion, 60° 
for posterior extension, 90° for abduction and 40° for 
adduction as depicted in Figure 7 (a). We can easily get -60° 
<𝜃𝑅𝑆𝑥<-180° while -180° <𝜃𝑅𝑆𝑦<40°. Since we considered 
as the length of each segment is fixed, assumed shoulder 
joints coordinate value is (0, 0, 0) and upper arm length is l0. 
The elbow coordinate value can be calculated using, 
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(a) 

 
(b) 

(𝑥𝑒𝑙𝑏𝑜𝑤 , 𝑦𝑒𝑙𝑏𝑜𝑤 , 𝑧𝑒𝑙𝑏𝑜𝑤) =

[

1 0 0
0 cos𝜃𝑅𝑆𝑥 −sin𝜃𝑅𝑆𝑥
0 sin𝜃𝑅𝑆𝑥 cos𝜃𝑅𝑆𝑥

] [

cos𝜃𝑅𝑆𝑦 0 sin𝜃𝑅𝑆𝑦
0 1 0

−sin𝜃𝑅𝑆𝑦 0 cos𝜃𝑅𝑆𝑦

] [
0
0
−𝑙0

]. 

  (10) 
 
Using the values θRSxand θRSy from 10, the motion range of 

elbow joint can be calculated. By comparing this elbow range 
with the result of 6, we could filter input sensor data. If the 
results of 6 is not in the range of elbow, we assume that it 
may not a human regular motion. 

 
For the right-elbow (RE) joint shown in the Figure 7(b), it 

is not only deal with its own range of motion, since it is a 
kinematics chain. It also has to follow the transfer relation. 
So the angels can be described as following range: 

𝜃𝑅𝑆𝑥 < 𝜃𝑅𝐸𝑥 < 𝜃𝑅𝑆𝑥 + 150°, 
𝜃𝑅𝑆𝑦 < 𝜃𝑅𝐸𝑦 < 𝜃𝑅𝑆𝑦 + 150°. 

After we get the elbows range of motion fore-arm length 
is l1, the end values can be calculated using, 

 
(𝑥𝑒𝑙𝑏𝑜𝑤 , 𝑦𝑒𝑙𝑏𝑜𝑤 , 𝑧𝑒𝑙𝑏𝑜𝑤)

= [

1 0 0
0 cos𝜃𝑅𝑆𝑥 −sin𝜃𝑅𝑆𝑥
0 sin𝜃𝑅𝑆𝑥 cos𝜃𝑅𝑆𝑥

] [

cos𝜃𝑅𝑆𝑦 0 sin𝜃𝑅𝑆𝑦
0 1 0

−sin𝜃𝑅𝑆𝑦 0 cos𝜃𝑅𝑆𝑦

] [
0
0
−𝑙0

]

+ [

𝑥𝑒𝑙𝑏𝑜𝑤
𝑦𝑒𝑙𝑏𝑜𝑤
𝑧𝑒𝑙𝑏𝑜𝑤

] 

  (11) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7 The range of motion (a) right shoulder Joint, (b) right elbow joint 

 

E. Extended Kalman Filter 
In this research, by integrating the output of the gyroscope 

and the accelerometer, the Kalman filter provided a noisy and 
disturbed but drift-free measurement of orientation. We can 
get the Process Model and Measurement Model for the 
extended Kalman filter. 

For a sensor in the state of rest, the linear acceleration is 
quite small. So the signals from an accelerometer can be 
regarded as the gravitational acceleration. But in most 
situations, the kinematics linear acceleration is usually in 
existence. Thus, the data from accelerometer and gyroscope 
are fused using EKF to calculate the gravitational 
acceleration. The state vector of the dynamical system is the 
gravitational acceleration expressed in the sensor coordinate 
frame, represented by gs. The control vector of the system is 
the angular velocity from the gyroscope, denoted by ωs. The 
measurement vector of the system is the acceleration data 
from the accelerometer, denoted by aS. Define gS= [ g s

x , g s
Y ,

g s
Z ]T, ωS= [ s

x , s
Y , s

Z ]T, aS= [ as
x , as

Y , as
Z ]T. Then the state 

equation of the dynamical system is represented by, 
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 , (12) 

where T denotes the sampling period of sensors. The 
measurement equation of the system is represented by, 
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, (13) 

where the n = [ngx, ngy, ngz]T denotes the measurement noise. 
 

The result of the human motion of human skeleton is 
described using Euler angle. So all data from sensors used to 
calculate angle in order to make the dynamic of human 
motion. The gyroscope can be calculated into the angle using 
integrating of sensor sampling time, and the accelerometer 
can be calculated a deflected angle by using trigonometric. 

 
 Angle(Axz) = sin−1(x/gravity) (14) 
 Angle(Axz) = tan−1(x/z) (15) 

 
During the calculation, initially, we only considered 

equation 14. But, when the x is larger than gravity answer is 
not possible. And also there was an error when only used 
equation 15 when the z value is minimum. Hence we 
combined two formulas and run while wearing the sensors in 
order to get much more stable result for the angle. At that 
time, we noticed that there was a small difference between 
angles. Then assigned the minimum difference between two 
formulas and got the accelerometer value as 0.4477539 m/s2. 

 
Algorithm 2: Merge the Gyro and Accel data 
INPUT:  acceleration (accel), gravity (gyro), 

  distance alone x axis(x) 
  distance alone z axis(z) 
  total data(n) 

OUTPUT: acceleration angle (Angleaccel), 
  gravitational angle (Angleg) 

BEGIN 
∀n 
get accel[n] from sensor using median filter  
get gyro[n] from sensor using high pass filter 
∀a∈accel 
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(a) 

 
(b) 

Fig. 8 (a) Leg status during walking, (b) walking simulation. 
 

IF a> 0.4477539 
Angleaccel= sin-1(x/gyro) 
ELSE 
Angleaccel= tan-1(x/z) 
∀g∈gyro 
g = Ext. Kal. Filter (gyro, accel)  
Angleg = ∫g dt 
RETURN Angleaccel, Angleg 
END 

Algorithm 3: Walking estimation 
INPUT :  legs status (LS), stands (ST), swing (SW) 
OUTPUT:  Kinematic analysis (Ka) 
BEGIN 
∀LS 
IF both legs ST 
Ka = calculate (Forward Kinematics) 
ELSE IF one leg ST and the other SW 
IF leg stands 
Ka = calculate (Forward Kinematics) 
ELSE 
Ka = calculate (Inverse Kinematics) 
RETURN Ka 
END 

F. Gait Estimation 
Walking estimation is conducted in the following two 

steps: walking status detect and kinematics analysis as 
written in algorithm 3. Walking status detect is used to 
determine the support leg of which ankle joint is selected as 
the root joint of the lower body model during walking. 
Human walking is a cyclical motion. We can divide into two 
phase as shown in Figure 8 (a) stance phase (ST) and swing 
phase (SW). 

 

The stance phase (ST) starting by a heel on the ground is 
the portion of the cycle during which a foot is contacted with 
the ground. The swing phase (SW) starting with a toe off 
which is the portion of the cycle when the foot is not in 
contact with the ground. Something during a walking our 

both legs are standing or are in the double stance phase (DS). 
During the DS phase, we consider the leg which is just going 
into the ST as the support leg. The stick model of the walking 
gait shows in Figure 8 (b). (p): Left terminal swing, Right 
terminal stance, Right toe reference. (q), (r), (s): Left support 
leg, Left toe reference. (t): Left terminal stance, Right 
terminal swing, Left toe reference. Here grey dash lines 
represent the lower body movements 

IV. EXPERIMENTAL RESULTS AND DISCUSSION 
We performed the following experiments to evaluate the 

efficacy of our inertial sensor based human motion tracking 
system. We used OpenNI library since it is open source and 
we could easily get the coordinate value of each joint in 
human model. First, we compared the tracking result. Then 
we record 14 joints position data in our method and Kinect, 
include left-shoulder, left-elbow, left-wrist, right-shoulder, 
right-elbow, right-wrist, left-hip, left-knee, left-ankle, right-
hip, right-knee, right-ankle, chest, and head. 

 

A. Comparing with Kinect Result 
While running our method and OpenNI project at the same 

time, recorded the posture result. Inertial sensors are mounted 
to the human body segments including upper-arms, forearms, 
chest, thighs and shanks. First we sit on chair and swing the 
arms. Then we stand and do much more postures. Figure 9 
shows six screenshots of recorded results. The left picture of 
a particular screenshot represents the result of proposed 
method while the right picture represents Kinect OpenNI. 
During this experiment, we could notice that the proposed 
motion tracking system works well in position of human 
skeleton in real-time. 

 

 
Fig. 9 Experimental results of both our method and Kinect OpenNI. Left: our 
method result; Right: Kinect OpenNI result. For (a) and (b) we sit on the 
chair, and for the left (c), (d), (e), (f) we just take much standing postures. 
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(a) 

 
(b) 

Fig. 12 Human walking gait record (a) View from right side (b) view 
from left side (c) full view. 

 

B. Coordinate Diagram 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10 Coordinate diagram result. (a) Chest result using our method. (b) 
using Kinect OpenNI. (c) takes the left wrist position result using our method, 
(d) using Kinect OpenNI. (e) the result of right ankle using our method (f) 
Kinect result 

We have recorded 13 skeleton joints coordinate value 
including shoulder joints, elbow joints, wrist joints, hip joints, 
knee joints, ankle joints and chest of both methods. Among 
them we have considered chest, left wrist and right ankle 
asexamples. Figure 10 depicts the comparative results of the 
joints cooridinate diagram result for our method and Kinect 

sensor. Motion analysis, which represent in y-axis in meters 
over time in seconds. Both 10(a) and 10(b) depict the result 
of chest joint’s cooridiante result. 10(a) is using our proposed 
method and10(b) is using Kinect sensor. This demonstrated 
that the result from 10(a) is a little more convergent and the 
data is much more smooth. 10(c) and 10(d) depict the  

location of the left wrist, while 10(e) and 10(f) are 
represent the right ankle diagram. Corresponding values of 
Figure 10(a), 10(b) and 10(c), 10(d) are as in Table 1 and 
Table 2 respectively. 

 

C. Applications 
HCI is wildly used in many parts of human life, like video 

games, virtual reality, 3D technology, Multi-Media, etc. We 

used our method to play some video games and use our 
method to control the Microsoft Power Point. Figure 11 (a) 
shows that play First Person Shooting (FPS) game using our 
method. Used chest joints angle to control the rotation of the 
player. When the chest joint leans to the right side, the 
player in the video game will leads to right side. Ankle joints 
movement controls the players step. Player will fire while 
we put right hand up. A flight simulator game has been 
tested using our method which has been shown in Figure 11 
(b). We used upper body’s posture to control planes fly state. 

 

D. Walking Estimation 

 
Fig. 11 Game control using our method (a). FPS game using our method (b) 
flight simulator game using our method 

 
As we used two kinds of kinematics, our model is not 

fixed at the centre of mass. Model can walk as what we have 
done in the reality. We have recorded many walking frames 
as shown in Figure 12. 

 
TABLE 1. 

MOTION ANALYSIS OVER TIME IN SECONDS AND JOINT 
POSITION VALUES CORRESPONDINGTO FIGURE10(a) AND 10(b) 

 
 
 

 

 
(a) 

 
(b) 

  (a) (b) 

Time x z y x z y 

0 -0.0013 0.0076 0.0073 0 0.0075 0.0074 

1 -0.0025 0.0075 0.0075 -0.005 0.0076 0.0078 

2 -0.0075 0.0076 0.0075 -0.01 0.0077 0.0078 

3 0.005 0.0125 0.0125 -0.0025 0.0076 0.0077 

4 0.0025 0.0075 0.0076 0.005 0.0078 0.0078 

5 0.01875 0.0075 0.0075 0.005 0.0076 0.0078 

6 0.01875 0.01 0.00875 0.0185 0.0076 0.0079 

7 0.01875 0.00875 0.00874 0.0175 0.0078 0.0078 

8 -0.0025 0.01125 0.01 0.0175 0.0076 0.0077 

9 -0.01 0.01375 0.00875 0.005 0.0077 0.0077 

10 -0.0075 0.015 0.00876 -0.0085 0.0125 0.00775 

11 -0.0055 0.01377 0.00875 -0.0045 0.015 0.0077 

12 -0.01 0.01375 0.00878 -0.0045 0.014 0.0077 

13 -0.0025 0.0125 0.00875 -0.0075 0.0125 0.0077 

14 0 0.0158 0.0075 -0.005 0.0125 0.0077 

15 0.015 0.01375 0.0025 0.0175 0.011 0.005 

16 0.01125 0.01125 0.0026 0.0175 0.0125 0.006 

17 0.0015 0.01 0.0125 0.0145 0.0126 0.0078 

18 0.0015 0.01 0.0125 0.0145 0.0126 0.0078 
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TABLE 2. 
MOTION ANALYSIS OVER TIME IN SECONDS  

AND JOINT POSITION 
VALUES CORRESPONDING TO FIGURE 10(c) AND 10(d) 

 

 
 

V. CONCLUSION AND FUTURE WORK 
This research study implemented a HMC system using 

multiple inertial sensors, and introduced an efficient human 
tracking algorithm. Further by applying an accurate gait 
estimation algorithm, a real-time human skeleton animation 
capture system was born. The performance of system was 
fast and stably in an area of 20m×20m which is much larger 
than Kinect. 

After performing a series of experiments such as human 
motion with complicated movements, it was shown that our 
method can do the same done by Kinect SDK with much less 
data shaking. Also some motions like hand cross over or leg 
cross over, our method produced better results than Kinect as 
Kinect may lose the skeleton of the blocked part. 
Furthermore, our method has a larger working area than 
Kinect as our method uses a radio frequency sensor which 
can provide a communication range of 10m or more. By 
applying kinematics, we could make the skeleton movement 
as in reality, such as walking estimation. Additionally, we 
have tested our method with video games and it worked well 
in both of these two games. 

As possible extensions of this work, we would like to 
improve our system under hardware design, performance 
improvement and experiment. Currently, the method has only 
20 fps, in future, we plan to use a faster micro centre unit to 
increase the number of fps. Since our proposed method has 
been used nRF24l01 for the communication between PC and 
MCU, which has 10 meter to 15meter plan to replace 
nRF24l01 with WIFI unit which can make an even larger 

area of working. Furthermore, by attaching more joints such 
ascrotch joint and back joint, much more detailed human 
motion could be presented. We plan to build a Back 
Propagation Neural Network by using Kinect results as the 
standard output and our method results as the input data, to 
get better capture results of human motion. In addition to 
Kinect, we would like to compare our method with other 
inertial sensor systems by Xsens technology or other 
companies. 
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