
International Journal on Advances in ICT for Emerging Regions 2017 10 (1):

International Journal on Advances in ICT for Emerging Regions June 2017

UML Generator – Use Case and Class Diagram

Generation from Text Requirements
Chamitha Ramal Narawita, Kaneeka Vidanage

Abstract— This research mainly is focused on

automation of Unified Modeling Language (UML)

diagrams from the analyzed requirement text using

Natural Language Processing (NLP). The looks and

styles of software engineering have been completely

changed in the recent times. Presently, software

engineering follows the rules of Object Oriented design

patterns. All phases of software engineering are

deviating from the conventions and new paradigms are

more popular these days. Same is the case with Software

analysis process which uses Unified Modeling Language

to map and model the user requirements. Analysis is the

key process of building modern information system

applications and base for the robust and vigorous

software application’s design and development.

Nowadays everybody needs a quick and reliable service.

It was necessary to have some sort of quick, accurate

and intelligent software for generating UML based

documentations to save time and budget of both the user

and system analyst [1].

Keywords— UML Diagrams, Use Case Diagram, Class

Diagram, Natural Language Processing, Artificial

Intelligence, Machine Learning, Software Design Phase

I. INTRODUCTION

The automation of UML Diagrams using natural

language processing is a highly challenging task due to the

following reasons [2].

 Natural language is arguable. Thus, detailed and error-
free analysis is very difficult.

Manuscript received on 12th November, 2016. Recommended by Dr.

T.M.H.A.Usoof on 4th May, 2017. This paper is an extended version of the

paper, "UML Generator An Automated System for Model Driven

Development" presented on ICTer2016 Conference.

Chamitha Narawita is a BEng(Hons) student at University of Westminster

and following Master of Computer Science (MSC) at University of

Colombo. Currently working as a Software Engineer at Calcey

Technologies. (e-mail: chamithanara@gmail.com)

Kaneeka Vidanage is an M Phil candidate in semantic web from

University of Colombo and a lecturer at Informatics Institute of

Technologies.. (e-mail: shehan@cse.mrt.ac.lk)

 There could be different ways of representing the same

semantic.

 Concepts that were not explicitly expressed in a written

source are often very difficult to model. Usually, expert

domain knowledge is needed to identify the hidden

classes.

Design phase is the most important among the other phases

because blueprint of a system helps developers to avoid all

the misunderstanding regarding the software by involving

the users. Requirement engineers analyze requirements
manually to come out with highly precise UML diagrams

for their systems. By modeling a system, most important

aspect is to capture the dynamic behaviors. Static behaviors

are not sufficient to build models for a system rather using

dynamic behaviors. Use case diagram shows dynamic

aspects of a system with both internal and external

interactions. They describe the events of a system and their

flows. However, the use cases never describe how they are

implemented. When it comes to class diagrams its other

way around. The class diagrams can be defined as static

diagrams and they represent the static view of a system. A
class diagram contains classes of the system, their attributes,

operations and constraints imposed on the system. They can

be directly mapped with the object-oriented languages as

well. Therefore, to provide a dynamic and a static view of

the scenario, UML Generator generates use case and class

diagrams by analyzing the input text. This research will be

contributing towards filling the gap between gathered user

requirements and the phase of the implementation by

sorting out the problems mentioned above[3].

According to the norms and conventions, before drawing

the UML diagrams the system analyst has to do a lot of
work by analyzing the business logics and figuring out the

user requirements. Out of the tools, the author considered

the absence of a software which provides services by

manually drawing UML diagrams more efficiently except

Rational Rose and Smart Draw and there is no doubt that

these are reasonably good software but with many

disadvantages. First, analysis is needed to investigate the

requirements and then draw the models separately. Hence,

there is wastage of so much time when using current

available tools to create UML models for the required

scenario. Nowadays, everybody needs a quick and reliable
service. Moreover, the time spent on analyzing systems and

poor quality of human analysis shows the need of

automated support.

UML Generator – Use Case and Class Diagram Generation from Text Requirements 2

June 2017 International Journal on Advances in ICT for Emerging Regions

As shown in figure 1 according to the survey carried out to

gather requirements, most of the users have agreed to the

researcher’s opinion, which 75% (38 out of 51) of overall

responses have positive thoughts regarding this system.

II. LITERATURE REVIEW

A. Natural Language Processing (NLP)

 Once the user enters the requirements, there should be a
mechanism to extract the information and to understand the

text from currently available techniques. To analyze a large

amount of text data, currently NLP is the only available

technique for the developers. NLP is an area of research and

application that explores how computers can be used to

understand and manipulate natural language text or speech

to do useful things [7].

User requirement analysis is an information extraction

application of NLP. It is the identification of specific
semantic elements within the user's requirements entered in

textual form [3]. Therefore, proposed system comes under

information extraction over the Information Retrieval and

Question Answering Tasks in NLP [5].

To extract the information from a given text, several

approaches were used in natural language processing.

1) Sentence Splitting

Using this approach, the proposed system is expected

to split the all text into sentences after user entering the

requirements.

2) Lexical Analysis

Lexical analysis approach will get the split sentences

and it will tokenize the sentences into words.

3) Syntax Analysis

From this, the module receives the lexical tokens as the

input and applies a rule-based approach. It generates

outputs in form of parts of speech in a given text.

4) Word Chunking

By using a chunking approach to the proposed system,

the main expectation is to derive the use cases from the

input text. It identifies noun phrases (NP), verb phrases

(VP), and prepositional phrases (PP) using tokenized text

and POS tags.

UML Generator is a web application, which was

developed using C#.Net framework. SharpNLP has been

used as the NLP library, which is the C# open port of the

Java OpenNLP tools, plus additional code to facilitate NLP.

B. Machine Learning

By using machine, learning with the UML Generator it

understands the key features of the use case and class

diagrams as follows.

 Identify meaningful and not meaningful use cases (rate

use cases).

 Identify relationship types in use case diagram

(associations between use cases and actors, include,
extends and generalizations).

 Identify relationship types in class diagram

(associations between classes, aggregations,

compositions and generalizations)

 Identify multiplicities in a relationship in class diagram

(Zero to One, One to One, Zero to Many, One to Many,

Many to Many).

Table I shows the accuracy levels of the algorithms for the

rate use cases model built in Weka. The author has

considered both efficiency and accuracy levels of the

algorithms when training the Weka models.

TABLE I

ACCURACY LEVELS OF THE CLASSIFIERS

Classifier Description

Multi-layer

Perceptron

Multi-layer Perceptron has 100% of

accuracy with the use case rating

model. But it has spent 270.28 seconds

to build the model.

However, there could be more than

one use case in a scenario to rate when

running it real time. Therefore, using

MLP can raise various performance

issues with the system.

Logistics

Logistics has a decent amount of good

accuracy level with the model and it

has spent only 0.35 seconds to build

the model

Sequential

Minimal

Optimization

(SMO)

SMO has a lower accuracy level than

the Logistics.

Weka has been used as the machine leaning tool to develop

the UML Generator. Taking into consideration about the

0 0

13

30

8

0

20

40

Very Low Low Somewhat
Low

Somewhat
High

High

How do you rate an automated system to generate
UML diagrams?

Fig. 1 Importance of an automated system

3 Chamitha Ramal Narawita, Kaneeka Vidanage

International Journal on Advances in ICT for Emerging Regions June 2017

accuracy levels and performances, Logistics classifier has

been used to train the use case model.

Fig. 2 shows the text classification flow of the UML

generator.

The relationships between use cases and classes were

recognized using an algorithm written in C#. Figure 3

shows an example of the use case relationship generation

using Weka vote classifier. Same algorithm has been used

to extract the relationships between classes as well.

Let us assume there is a paragraph that consists of three

sentences. Using Natural Language Processing sentence

tokenization happens and then C# algorithm will combine

the sentence 1 and sentence 2 as shown in the figure. Then
it will send to the Weka relationship recognition model and

will output the voted values for each relationship type.

Same process will happen between sentence 1 and sentence

3 as well. Now there are two maximum values have been

selected and the highest voted value will be the relationship

type between two sentences.

As earlier mentioned Weka models have been used to

recognize the relationships between use cases and classes.

In the Weka models, the author has defined some specific

words to identify the relationship types.

 Must, should, required to, etc. indicates the Include

relationships

 Maybe, sometimes, either, etc. indicates the Extend

relationships. [8]

 Divided to, either by, is a type of etc. indicates the use

case and class Generalizations. [9]

 In, to, by, etc. indicated the class Associations.

 Must, have, first, has to, etc. indicates the Aggregation.

[8]

 As an option, depends on, do not have, etc. indicates

Composition.

C. Rule Based Approach

A rule-based system is used in the field of computer science,

as it is a series of if-then statements using assertions. These
assertions dictate how each rule will react, given the

assertions already in place [4]. In the proposed system, rule-

based approach will assist with the following functionalities

 Remove unwanted terms in the user input text.

 Identify specific terms in the input text.

 Define Weka ARFF file names to read the files.

The best approach to implement the rule based approach is

using XML. By using XML rules, we can define an own

structure for the XML file and develop our own algorithm
to execute the rules. 0

Fig. 4 shows the structure of the XML file that has been

used to define the rules.

Root element of the XML file is defined as Rules. Within

the root element, can define any number of Rule elements

with the name and the type of the rule whether it belongs to
class diagram (Class) or use case (UseCase) diagram.

Using Condition elements, it defines specific terms inside

the Value attribute.

D. Diagram Generation

The output of this system is a visual studio modeling

diagram project that consists of generated use case and class

diagram using selected actors, classes, use cases, attributes,

use case relationships and class relationships.

There are many CASE tools to draw the UML diagrams.

StarUML and Rational Rose are some of famous tools

currently using in the industry. UML Generator is an

integrated solution for the Visual Studio (VS). To integrate

Fig. 3 Relationship recognition algorithm

Fig. 2 Text classification flow

Fig. 4 Structure of the rules XML file

UML Generator – Use Case and Class Diagram Generation from Text Requirements 4

June 2017 International Journal on Advances in ICT for Emerging Regions

a software to an existing Microsoft product, all the

technologies and tools that have been used to develop the

software should have Microsoft license. Therefore, visual

studio modeling can be used to generate the final outputs of

UML Generator. The all three tools (Rational Rose,

StarUML and VS Modeling) are currently not providing

any documentation or an API to override their product.

However, the base of VS Modeling with XML is simple to
understand rather using StarUML or Rational Rose.

E. Related Work

Few researchers have done UML diagram generation

using natural language processing. After understanding the

importance of automating the UML diagrams, most of the

researchers have used natural language processing and

domain ontology to get expected outcomes.

Using rule-based module specifies subject nouns as

objects, verbs as methods of the objects, and adjectives as
attributes of the object. Object nouns are sometimes

specified as objects and sometimes as attributes. Then

associations and relationships among extracted classes are

performed. Finally, a logical model of the class diagrams

generates based on previously extracted Information. The

drawing module converts the logical model into the class

diagrams by connecting small pieces of images already

stored in the database [3].

Most of the researchers have used only NLP, rule-based

approach to achieve the task and only generates the class

diagram or the use case diagram. By creating an image as
the final output, users will not be able to add their own

modifications, which limits the user to the system.

A research done by Bajwa and Hyder using LESSA

approach was all about the automatic generation of the Use

Case diagrams after reading and analyzing the given

scenario in English language provided by the user. Their

designed system could find out the classes and objects

together with their attributes and operations using an

artificial intelligence technique such as natural language

processing. Then the Use Case diagrams are drawn [6].

NLP is the core technology that has used to extract the

information from the text.

F. Gathered Information

To gather the requirements the author has used online

questionnaires and interviews.

Considering the current methods used to draw the UML

diagrams, as shown in figure 5, 59% of the respondents still

manually review and update the model, which is more time

consuming and is the traditional way of drawing UML

diagrams.

The proposed system delivers both static and behavioral

features of a system. It generates a use case diagram to

express the behavioral behaviors and static behaviors are

expressed by the class diagram. However, in UML, there

are many diagrams, which deliver static features and

behavioral features of a system.

As shown in figure 6 and 7 respondents have responded to

the questions that asked regarding best diagrams to capture

the static and behavioral behaviors of a system (researcher

does not mention that the proposed system is going to

generate use case and class diagrams). According to the

Fig. 5 Current methods to darw UML diagrams

Fig. 6 Static features of a system

Fig. 6 Static features of a system

Fig. 7 Behavioral features of a system

5 Chamitha Ramal Narawita, Kaneeka Vidanage

International Journal on Advances in ICT for Emerging Regions June 2017

results, a class diagram is the most desired diagram among

the respondents that captures static features. Considering

about behavioral features, use case has obtained higher

number of responses. However, activity diagram has 16
responses as well. Considering the limitations in

automation of activity diagram needs higher level of

intelligence, which describes sequences between activities

of the system. Hence, use case diagram could be a good

solution to deal with the scope of this research.

Figure 8 shows how important it is to maintain UML

designs correspondent to the implementations. 90% of the
respondents have mentioned correspondence between

implementation and the associated UML designs are

important.

For this questionnaire, the targeted users were software

developers, project managers and business analysists in the

industry because they use UML diagrams in their day-to-

day life.

G. Functional Requirements

 TABLE III

 FUNCTIONAL REQUIREMENTS

No. Functional

Requirement

Description

FR01 Recognize

use cases

Using NLP and Weka models

recognize the use cases from user
input text

FR02 Extract

relationships

between

actors and

use cases

From the user input text recognize

the different types of relationships

in use case diagram

FR03 User select

actors for use

case

System suggested actors for the use

case to be drawn. User can remove

unwanted actors suggested by the

system.
FR04 Recognize

classes for

Using NLP recognize the classes

from user input text

class

diagram
FR05 Extract

relationships

between

classes

From the user input text recognize

the different types of relationships

in class diagram

FR06 User select
classes for

class

diagram

System suggested classes for the
class diagram to be drawn. User

can remove unwanted classes

suggested by the system.
FR07 User select

relationship

types for

class

diagram

System suggested relationship

types between classes. If there are

any wrong suggestions by the

system, user can change to the

desired one.
FR08 Extract

multiplicities

between

classes

From the user input text, recognize

the multiplicities in class diagram

FR09 Generate use

case and
class

diagram

XML files

Using all the data gathered from

user input text system generates use
case and class diagram XML files

for visual studio

FR10 Real time

validates the

user input

text

User has to enter the requirements

according to pre-defined rules. If

there is any mismatch in the text,

system draws a red line under the

sentence.

H. Non Functional Requirements

Non-functional requirements define the qualities and

system attributes that can be used to evaluate the system.

Following are the non-functional requirements of the

proposed system.

 1) Performance

 a. Efficiency: System should generate the use case

and class diagrams quickly (fast respond).

 b. Accuracy: should provide high level of accuracy

when extracting the elements in use case and class diagram.

 2) Usability

 The user interface of the system should clear, simple,

attractive, consistent, and easy to understand.

 3) Maintainability

 Application should easily maintainable.
Implementations should follow the coding standards, which

improves readability and understandability.

 4) Reliability

 System should always behave consistently by

acquiring user needs. The use case and class diagrams,

Fig. 8 Importance of correspondent between UML diagrams and
implementations

UML Generator – Use Case and Class Diagram Generation from Text Requirements 6

June 2017 International Journal on Advances in ICT for Emerging Regions

which generates by the system should have higher level of

accuracy.

III. HIGH LEVEL ARCHITECTURE

There are five main modules in the UML Generator with

the website. Users of the system interact only with the

website of the UML Generator. User can upload a text file
that contains a scenario or just copy and paste the text in the

text area. The system extracts the user cases, actors, classes,

attributes using both NLP module and XML Rules. After

identifying use cases, Weka module rates the use cases as

“use case” and “not a use case”. Associations were

extracted using Weka modules according to the C#

algorithm that author has implemented.

Visual studio modeling draws the use case and class

diagram. The system suggests the findings to the user and
they can filter the use cases, actors, classes, attributes and

all the relationship types. Therefore, the output is highly

customizable and user can get the desired output according

to the requirements.

IV. PROPOSED APPROACH

Fig. 10 shows the workflow diagram for the UML

Generator. The user has to go through maximum of eleven

(11) flows to generate the use case and class diagram from

the input text scenario.

1. The user starts the web application by entering the URL
of the website. After finish loading, the UML Generator

web application user has to enter the requirement text

inside the text area.

2. Entered text scenario will send to the NLP module and

then text tokenization will happen. Then extracts part-

of-speech (POS) tagging and UML Generator identifies

actors for the use case diagram and classes for the class

diagram using nouns of the POS tag vales. XML rule

based approach removes the unwanted words from the

identified nouns list and will output further accurate

results to the user.

Use cases were identified using the word chunking

technique in NLP. Usually to be an usecase there should

be a verb and a noun. Word chunking recognizes verb

phrases, noun phrases and prepositional phrases.

Therefore, use cases were created using consecutive

verb phrases with a noun phrases.

E.g.: [VP inserts/VBZ] [NP ATM/NNP card/NN]

 VP – Verb Phrase, NP – Noun Phrase

 Use case: inserts ATM card

Moreover, the XML rule based approach has been used

to filter the unwanted words from the recognized use

cases. A trained Weka model has been used to rate the

use cases that identified using NLP. Each use case will

send to the Weka model and rated as “Use case” or “Not
a Use Case”.

Attributes were identified using XML rule based

approach. In the XML file, words have defined to

recognize as the attributes. Moreover, if there are two

consecutive nouns and if the second noun is number, no,

type, code, date, volume, id, name, address, year, record,

etc. it has identified as an attribute.

3. Shows the Initial findings to the user on the website.

4, 5, 6, 7: User can select and filter identified use cases,

attributes, actors for use case diagram and classes for the

class diagram. The filtering steps are optional to

generate the diagrams. User can proceed with the initial

findings as it is.

8. Using initial findings, relationships were extracted
between use cases and classes. With the relationships

recognition algorithm mentioned earlier, the Weka vote

algorithm has been used with the Logistics and SMO

classifiers.

9. The extracted relationships will be shown using tables

in the UML Generator website.

10. User can make further changes by changing the

relationship types between use case and classes which

identified by the system.

11. By clicking generate diagrams button, system will

generate both use case and class diagrams as a visual

studio modeling solution only for the selected elements

by the user.

Fig. 10 Workflow diagram of the website

7 Chamitha Ramal Narawita, Kaneeka Vidanage

International Journal on Advances in ICT for Emerging Regions June 2017

The phases of diagram generation using VS has shown in
Fig. 11.

V. IMPLEMENTATION

Based on the requirements of the UML Generator, a web

application has been developed using Visual Studio .Net

environment.

The mockups of the website for initial findings and

relationship recognition is shown in Fig. 12.

Phases of the implementation can be given as follows.

 1. Natural language processing module to identify

initial findings to generate diagrams – part-of-speech

tagging, tokenizing, sentence splitting and word chunking.

 2. Weka machine learning to identify association types

of use case and class diagram – classification and voting.

 3. XML rule based approach to identify attributes and

filter the words.

 4. Visual Studio modeling to generate use case and class

diagram.

 TABLE IIII

 TECHNOLOGIES AND TOOLS USED

Technologies Tools

The above table shows the technologies and tools used to

develop the UML Generator.

VI. TESTING

Currently author has tested the system with more than

twenty (20) scenarios and it has an accuracy level of around

70%. This value has been calculated according to the passed

test case results for all the scenarios.

Passed
70%

Failed
30%

Summary of Test Case Results

Passed

Failed

Blocked

Not Run

Paused

Fig. 13 Summary of the test case results

Fig. 11 The phases of diagram generation

Fig. 12 Mockups of the website

UML Generator – Use Case and Class Diagram Generation from Text Requirements 8

June 2017 International Journal on Advances in ICT for Emerging Regions

TABLE IV

 BROWSER COMPATIBILITY OF THE SYSTEM

Browser

Name

 Status Comments

Internet

Explorer

 Pass Performed well and all the styling

shown as is supposed.

 Google

Chrome

 Pass Performed well and all the styling

shown as is supposed.

Website was lagging when

scrolling. However, after 5-10

seconds it became normal.

 Mozilla

Firefox

 Pass Performed well and all the styling

shown as is supposed.

Microsoft

Edge

 Pass Performed well and all the styling

shown as is supposed. Better than

internet explorer/Chrome/Firefox

did.

Safari Fail Browser was not supported the

file uploader and styling shown

not as it supposed. All other

functionalities are working and

performance wise same as the

other browsers.

Table IV shows the browser compatibility of the website.

VII. EVALUATION

Detailed discussions of the evaluation results are:

 Users will doubt the findings of the system. By adding a
testing module to the UML Generator will enhance the

accuracy level of the system.

 Few evaluators have mentioned that Visual Studio is not

a suitable tool to generate the diagrams. The diagram

generation is a separate module from other functionalities

in UML Generator. Therefore, in future it will be easy to

replace the diagram generation module with any

diagramming tool. However, author’s enduring idea is to

introduce this application as a plugin to the Microsoft

Visual Studio.

 Can extend the system by adding several other diagram
types as plugins to the UML Generator. Then users can

select the desirable diagram types, which are needed most.

 User experience needs to be enhanced by improving user

interfaces, accuracy and performances of the system.

 Need to reduce the user involvement with the generation

of UML diagrams. Currently before producing the

diagrams, user can remove attributes, actors, classes, use

case relationships and class relationships. By identifying

highly accurate results, the system does not need to get

user inputs, can directly generate the diagrams.

 Developers will forget UML by using the UML
Generator. However, they will get used to do designing

before the implementations because UML Generator

gives a quick understanding about the both static and

dynamic features of the scenario.

Moreover, evaluations were made by comparing automated

diagrams with actually drawn diagrams.

Scenario of making an appointment: “A patient calls the

clinic to make an appointment for a yearly checkup. The

receptionist finds the nearest empty time slot in the

appointment book and schedules the appointment for that

time slot.”

Fig. 14 shows the actual drawn use case and class diagram

for the above-mentioned scenario. According to evaluator’s

knowledge, he has identified four use cases and two actors

for use case diagram and two classes for the class diagram.

Fig. 15 shows automated diagrams using the UML

Generator.

Fig. 14 Drawn diagrams by an evaluator

9 Chamitha Ramal Narawita, Kaneeka Vidanage

International Journal on Advances in ICT for Emerging Regions June 2017

As a conclusion, UML Generator has extracted most of the
elements identified by the evaluator. “Schedule the

Appointment” use case is the only unused element

according to the results. Actually drawn class diagram has

identified additional attributes and they are out of the scope

(not included in the scenario). However, if this system is

domain specific those attributes could be extracted by the

system. In general, UML Generator has generated the use

case and class diagram up to a considerable extent, which

definitely gives a good overall idea about the scenario.

Following are some Evaluations made by evaluators.

1. Mr. Alexander Boltov (University of Westminster,

Department of Computer Science) - “This is a very useful

system when it comes to designing phase of software. This
will definitely help for our academic work as well. I am

very happy with the approach of the system because system

gives chance to the user to play with the results. You need

to check the accuracy of the generated diagrams against the

hand drawn diagrams for a same scenario. It is good to add

another module to test the generated diagrams whether it

has identified all the elements that needs to include to the

use case and class diagrams.”

2. Mr. Antonis Michalas (Head of the Cyber Security

Group at University of Westminster) – “UI is very user

friendly and I am impressed about the customizations that

can be done after identifying elements of the diagrams.

Layout of the generated diagram is not a problem when it

comes to an automated system, even when user can edit the

diagrams after generating it. Overall, it is a good system.”

3. Mr. Praneeth Wickramasinghe (Technical Lead at

Navantis Sri Lanka) – “Fairly straight forward since it has

a nice flow within a single page. Not complicated. Clear

view of each section. This will help Rapid modeling using

natural language. However, it can be improved to

incorporate more UML diagrams. Support for more
diagrams and accuracy in natural language processing.

Good if user involvement can be reduced unless necessary.”

4. Mr. Hasitha Dananjaya (Senior Software Engineer

at Zone24x7 Sri Lanka) – “System does target and solve the

problem in a hassle free and accurate way. Drawing UML

Diagrams manually is always skipped by most of the

developers and considered as a troublesome task.

Therefore, they overlook and underestimate the value of

UML diagrams. System like this will encourage developers

to interact and play with such diagrams. Intuitiveness of the

system is commendable. Having able to manually filter and
fine tune identified entities and properties is crucial this

system has catered it nicely. As far as I am concerned, the

approach you have taken is sufficient in this stage.

However, when it comes to reading long SOW documents

you might need to fine tune. I would like to see this

implemented in a way, which is not depended on visual

studio. Having said that it might not make any sense in

future since VS will be freely available. Extending and

adding several other diagram types would be awesome. But

keep in mind that when extending it, do it as plug-in, so that

users can get only what they want and it would make
maintainability easy. The biggest drawback is developers

will forget UML.”

Taking about the limitations of the solution

1. The biggest limitation of the solution is all the

nouns in the scenario getting identify as actors and classes.

Using rule based approach it limits the output nouns to

some extend but it is difficult to build perfect system that

identifies only nouns related to actors and classes.

Therefore, UML Generator gives opportunity to remove

unwanted actors/classes and select only appropriate actors

and classes for their system.
2. The users of the system have to enter each sentence

according to subject-object-predicate structure to get better

results.

3. Because of a bug in Weka “stringtowordvector”

filter, cannot use “class” word with the input text scenario.

VIII. CONCLUSION

 Initially, the UML Generator encountered many

challenges in research and development, and had to grow

throughout the process. The author has done many

modifications and constructed it into what it is now.
Currently the UML Generator possesses its own

intelligence to extract the elements of UML and is capable

of creating use case and class diagram depending on the

input scenario with the customizations.

The main expectation of this project was to generate use

case and class diagram from the user input text scenario,

reduce the time, and cost factors of both users and system

analyst. Moreover, this system gives both static and

Fig. 15 Generated diagrams by UML Generator

UML Generator – Use Case and Class Diagram Generation from Text Requirements

10

June 2017 International Journal on Advances in ICT for Emerging Regions

dynamic view of a scenario by generating class diagram and
use case diagram. It will help the users of the system to get

a quick overview regarding the system that going to

develop.

When writing the literature review it has found that earlier

researchers were not used intelligence with this type of

research. Therefore, author has selected a different

approach with some intelligence to identify associations for

the use case and class diagrams and to rate the use cases that

identified using natural language processing. Moreover,

author has developed his own algorithms to extract the use

cases using natural language processing word chunking.
The system has completed most of the functional

requirements mentioned in the system requirement

specification. Recognizing multiplicities functionality for

the classes is a highly important task when considering

generating a class diagram. However, due to time limitation

with the undergraduate research, the author has kept it as a

future enhancement because it needs higher level of

intelligence and higher level of accuracy with the Weka

models.

With the concern of evaluation and testing carried out,

system shows capability of generating use case and class

diagram according to the input scenario. With the use of
algorithms, which was produced by the author, the system

in question will be producing adequate results in a

reasonable time. However, ultimate results can prove that

the algorithm is a success and could adapt many different

business scenarios. Then it is straightforward to attest that

system is almost a good product. By writing business

decisions in words, the system has conspicuous ability to

identify those by analyzing style of writing of the user.

In conclusion, in the area of automation of UML diagrams

author has done a deeper analysis and improvements. With

more fine-tuning this research could ultimately lead to a
commercial product that could be widely used.

IX. FUTURE WORK

This is an undergraduate research and the scope was

selected according to the given time period. Technology

changes every day and therefore opens up the window of

opportunity for continuous improvement (including new

features) for this application in the future to make it even

better.

A) Weka Module

 This system has identified use case and class

relationships using classification. Using regression also

could be a good approach.

 A Weka model to test the generated use case and class
diagram.

 Increase the accuracy of identifying use case and class

associations using a different algorithm.

B) XML Rules Module

 Use of Prolog or R tool could be helpful in enhancing

the accuracy of the system.

C) Natural Language Processing Module

 A new algorithm to identify the actors and classes
directly using Natural Language Processing without

giving chance to select. This will reduce the user

involvement in the system.

D) Web Application

 A help menu in website to guide the user throughout the

whole process.

 Improve the usability and user experience.

 Add more diagram types as plugins to the UML
Generator.

ACKNOWLEDGMENT

Authors of this paper acknowledge the support of all the

people who provided their research papers, and those who

made these papers available on the web.

 REFERENCES

 [1] I. S. Bajwa, M. I. Siddique and M. A. Choudhary, "Rule based

Production Systems for Automatic Code Generation in Java," 2006

1st International Conference on Digital Information Management,

Bangalore, 2007, pp. 300-305.

[2] Joshi, s. (2012), Textual Requirement Analysis for UML Diagram

Extraction, 3rd ed. [ebook] Prof. Dr. S. D. Joshi, p.1 Available at:

http://www.ijctee.org/files/VOLUME2ISSUE3/IJCTEE_0612_12.p

df.

[3] Bhagat, S., Kapadni, P., Kapadnis, N., Patil, D. and Baheti, M. (2012),

Class Diagram Extraction Using NLP, 1st ed. [ebook] International

Journal of electronics, Communication & Soft Computing Science &

Engineering, p.1 Available at:

http://www.ijecscse.org/papers/SpecialIssue/comp2/190.pdf .

[4] Webopedia.com, (2015), What is rule-based system? A Webopedia

Definition, [online] Available at:

http://www.webopedia.com/TERM/R/rule_based_system.html.

[5] Moldovan, D. and Surdeanu, M. (2003), On the Role of Information

Retrieval andInformation Extraction in Question AnsweringSystems,

1st ed. [ebook] Dallas: pringer-Verlag Berlin.

[6] Bajwa, I. and Hyder, I. (2007), UCD-generator - a LESSA

application for use case design, 2007 International Conference on

Information and Emerging Technologies, [online] 1(1), pp.1-3,

Available at:

http://www.researchgate.net/publication/4290733_UCD-generator_

_a_LESSA_application_for_use_case_design.

[7] Harmain H.M and Gaizauskas R., (2012), Natural Language

Processing and ObjectOriented Analysis, 1st ed. [ebook] UK:

Department of Computer Science University of Sheeld, p.1.

Available at:

http://www.dcs.shef.ac.uk/intranet/research/public/resmes/CS9808.

pdf.

[8] P. More, Generating UML Diagrams from Natural Language

Specifications, 1st ed. Pune: International Journal of Applied

Information Systems, 2012, p. 1.

[9] D. Deeptimahanti and R. Sanyal, Semi-automatic Generation of UML

Models from Natural Language Requirements, 1st ed. Association

for Computing Machinery, 2011.

