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Abstract— This paper presents an analysis of hyperspectral 

image data, carried out using two approaches followed by a 

comparison of the two. The hyperspectral image dataset used in 

this analysis corresponds to a strip along the North Eastern 

region of Sri Lanka, obtained by the Earth Observing (EO-1) 

satellite’s Hyperion sensor. Mapping land-cover using 

hyperspectral imagery makes it possible to obtain finer details of 

land-cover, which are not obtainable using RGB images. 

Therefore, hyperspectral imagery could be used to obtain useful 

information for natural resource location and ecosystem service 

management, assessing the human induced and natural drivers 

of changes in land, foliage or water bodies and even in the 

identification of fine details such as the distribution of minerals 

in an area before doing a ground survey. 

The two algorithms discussed in this paper, initially represent 

each pixel as a point in a high dimensional space of which the 

dimensions represent each band of wavelength and subsequently 

follows two unique approaches to cluster the points (pixels) in a 

reduced dimensional space. The first  algorithm discussed in this 

paper employs Principal Component Analysis (PCA), Fisher 

Discriminant Analysis (FDA) and Spectral Clustering in a logical 

sequence, while the second uses PCA along with concepts of 

Euclidean geometry. The pixels belonging to each cluster were 

labeled under ‘soil’, ‘foliage’ or ‘water bodies’, with the aid of the 

k-means algorithm and the hyperspectral image data of the 

training set obtained with the aid of Google Maps. The 

classification process is followed by a comparison of the two 

approaches employed. Conclusively, the two approaches 

discussed have their own pros and cons, whilst providing 

promising results. Hence, both algorithms could be used 

appropriately based on the application. 
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I. INTRODUCTION 

A hyperspectral image is a collection of high resolution 

monochromatic pictures depicting the reflectance values 

corresponding to a broad range of wavelengths. Hyperspectral 

images measure reflected radiation at a series of narrow and 

contiguous wavelength bands. This enables the selection of 
appropriate frequency bands, which carry the characteristic 

information of a given pixel. Multispectral images differ from 

hyperspectral images as, even though the images are obtained 

in more than one spectral band, they are non-contiguous in 

their coverage of the spectrum.  

There are three main methods of representing hyperspectral 

data. The first is, by the use of a hypercube, of which the XY 

plane corresponds to the pixel coordinate plane and the Z axis 

corresponds to the wavelength (in a conventional XYZ three 

dimensional space). It is formed by stacking the images 

obtained at contiguous spectral bands in sequence. 

Hyperspectral image (HSI) data can also be represented as a 

spectral signature, which is a reflectance spectrum, where the 

reflectance values are plotted against the wavelengths. The 

third method is, representing pixels as points on a higher 

dimensional Euclidean space where the axes corresponds to 

the reflectance values of each spectral band.  

The reflectance values in hyperspectral images mainly 

depend on the type of material (chemical composition) and its 

physical structure. The reflectance spectrum of a pixel is 

formed as a result of superposition of many reflectance spectra 

of the sub-pixel materials known as end-members in the area 

covered by the pixel. Further, the reflectance value mainly 

depends on the type of material (chemical composition) and its 

physical structure. As hyperspectral imagery enables analysis 

of images obtained at a large number of narrow contiguous 

spectral bands, many fine, accurate and precise information 

could be obtained through HIS, which would not be possible 

through multispectral imaging as RGB imaging. Further, 

hyperspectral image analysis enables detection of features 

using remote sensing, which is a non-intrusive method as other 

image analysis techniques but with a high degree of accuracy 

and a higher degree of detail. The popular applications of HSI 

include, feature detection of human faces (facial recognition), 

object identification, food quality detection, biomedical 

applications, mineral identification and land cover mapping. 
Land cover mapping using hyperspectral image data has its 

own merits and demerits. Since the finest details of the images 

are available, the accuracy of the classification is high when 
the ideal spectral bands are chosen. It is also possible to extract 

information about the images that are not conveyed through 

RGB images. However, the redundancy of data, complexity in 

computations and excessive memory usage are among the 

disadvantages of using Hyperspectral Imaging (HSI) data for 

land cover mapping [1]–[3].   

In this paper, the HSI data which was obtained by the Earth 

Observing - 1 (EO -  1) satellite’s Hyperion sensor [4] has been 

used to classify the pixels under soil, water and foliage in two 

different algorithms. The first algorithm consists of two stages. 

The first stage is used to classify pixels containing water and 

the next stage classifies the pixels containing soil and foliage, 
which are not easily separable. This algorithm requires a 

greater degree of computational power due to its advance 
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mathematical operations. The second algorithm however, is 

more simple and is mainly based on Euclidean geometry. The 

sensor that was used in imaging is capable of resolving more 

than 200 spectral bands (from 0.4 to 2.5 µm) with a 30-meter 

resolution. The instrument has the ability of imaging a 7.5 km 

by 100 km land area per image, while providing a detailed 

spectral mapping across all channels with high radiometric 

accuracy. The telescope provides for two separate grating 
image spectrometers to improve signal-to-noise ratio (SNR). 

Low SNR sub-bands within the HSI band have no effect on the 

final result of classification. Hence, they were eliminated in 

the pre-processing stage. 

The previous work carried out on the topic is described in 

section II. The study area and the dataset are presented in the 

section III. The technique used to preprocess data is discussed 

in the section IV. Algorithms used in this work are discussed 

in the section V under methodology. Results are presented and 

discussed in the sections VI and VII. Concluding remarks are 

made in the section VIII.  

II. RELATED WORK   

According to the previous work done on land cover 

mapping based on Hyperspectral imaging, comparisons have 

been made on the performance of a hierarchical algorithm 

which is used for land cover mapping, with the aid of 

hyperspectral and multispectral data of the same image [5]. 

The algorithm has used classical dimensionality reduction 

techniques such as Principal Component Analysis (PCA), 

Linear Discriminant Analysis (LDA) and Penalized 

Discriminant Analysis (PDA), followed by Mahalanobis 

Distance (MD) classifier, to perform the land cover 

classification.  
An algorithm for land cover mapping using HSI data based 

on neural networks has been proposed previously[5],[6], in 

which the neural network is trained by a set of samples taken 

from the image itself. The inherent tendency of parallel 

implementation in hyperspectral images, has been exploited in 

this algorithm.  

 Many algorithms on feature detection based on HSI, have 

been developed in the recent past using modern optimization 

techniques. An algorithm for sub pixel mapping based on 

particle swarm optimization, named Modified Binary 

Quantum Particle Swarm Optimization (MBQPSO) has been 
proposed in 2017 [7]. Its main focus is on the discretization of 

Quantum Particle Swarm Optimization (QPSO) which is 

implemented by modifying the discrete update process of 

particle location, to minimize the objective function, which is 

formulated based on different connected regional perimeter 

calculating methods.   

HSI analysis based through machine learning classifiers has 

been presented in the literature, where Support Vector 

Machines (SVM) and Artificial Neural Networks (ANN) are 

used [8]. It compares the accuracy of the two methods while 

presenting a universal feature detection technique. It has also 

concluded that SVM outperforms ANN in land cover 
classification, due to the ability of the SVM classifier to 

identify an optimal separating hyperplane for class separation, 

which allows a low generalization error, thus producing the 

best possible class separation. It further identifies a drawback 

in both SVM and ANN. That is, the inability of both the 

classifiers to operate on a sub-pixel level, which can 

significantly reduce their accuracy due to possible mixture 

problems that occur when coarse spatial resolution remote 

sensing imagery is used.  

In this paper, we propose two algorithms in order to detect 

features in hyperspectral images. The first algorithm is unique 

to the dataset under consideration, which results in a highly 

precise classification. The second is a more generalized and a 

simple algorithm which requires less amount of computational 

power. The two algorithms are compared and contrasted, while 
logically reasoning out each step in them. These algorithms 

and the concepts behind them can be adjusted to fit any HSI 

dataset of interest based on the affinity of the data points 

represented in a high dimensional space.    

III.  STUDY AREA AND DATA SET 

 The area of interest of our study comprises of a strip along 
the North Eastern region of Sri Lanka as depicted in the figure 
1. 
 The Hyperion image of the aforementioned region shown 
in figure 1 (a) and of geographical coordinates as in Table I, 
had been acquired on the 17th of September, 2005 starting at 
04:40:57 and ending at 04:45:35 in local time (+5:30 GMT). 
Two cameras, VNIR (Visible and Near-Infrared) and SWIR 
(Short Wave Infrared) had been used to obtain the 
hyperspectral images of 242 bands spanning across a range of 
wavelengths, from 355.59nm to 2577.08nm [8]. However, 44 
spectral bands have not been calibrated and cannot be used for 
data analysis. Low SNR sub-bands which provides inaccurate 
radiance values are eliminated in the pre-processing stage, in 
order to avoid inaccuracies in the classification process. 

 

     
               (a)                       (b)                                      (c) 

Fig. 1 (a) The geographical location of the study area (b) True color satellite 
image (c) The area chosen for classification 
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TABLE I 

LATITUDES AND LONGITUDES OF THE SELECTED REGION 

 Latitude/°N Longitude/°E 

Upper left corner 10.146810  81.251940  

Upper right corner 10.133729  81.319533  

Lower left corner 8.137243 80.818856 

Lower right corner 8.124515 80.886088 

 
 

TABLE II 
      THE STRUCTURE OF DATA FILES  

 

 

       

The Geo ‘TIFF’ images representing intensities of each 

spectral band, contained 7481 X 1851 pixels of which each 

pixel covers a geographical area of 30m X 30m. The data 

included in the images were radiance values of the respective 

wavelengths scaled by 40 for images obtained through the 

VNIR camera in the range of wavelengths from 400 nm to 

1400 nm (bands 1 - 70) and by 80 for images obtained by the 

SWIR camera in the range of wavelengths from 900 nm to 
1700 nm (bands 71 - 242).  

IV. PRE-PROCESSING 

Pre-processing is deemed to be an important stage prior to 

any data analysis with the intention of providing qualitative 

and more productive data [9]. Pre-processing included 

extraction of data in a useful manner while removing the 

uncalibrated sets of data as indicated in [4] and conversion of 

the radiance values of the Geo ‘TIFF’ images to reflectance. 

A. Extraction of Data 

As seen in figure 1 (b), it is well evident that the useful 

information in the image is limited to a much less region 

compared to the total size of the image (approximately 14%). 

Hence, in order to improve efficiency and to use the memory 

optimally, the important data were extracted in the following 

manner.  

MATLAB® variable files (.mat) containing arrays of size 

262 x 251 each, were created for each information containing 

row of the image in the structure shown in Table II (as there 

are 262 pixels per row and 251 spectral bands containing 

reflectance information). 

Finally, the uncalibrated data were removed creating a final 

matrix of size 262 X 207. 

B. Radiance to Reflectance Conversion 

In Hyperspectral image analysis reflectance values of 

closely lying bands are used and hence the radiance values 
obtained from the raw data set had to be converted into 

reflectance prior to any process of analyzing. The conversion 

process was done using, 

𝜌 =  (𝜋.𝐿𝜆. 𝑑
 2
) / (𝐸𝑆𝑈𝑁𝜆. 𝑐𝑜𝑠 𝜃𝑠),                          (1)                                                      

where, 

𝜌: unitless planetary reflectance, 

𝐿𝜆: spectral radiance at the sensor's aperture, 

𝑑 :   Earth-Sun distance in astronomical units,  

𝐸𝑆𝑈𝑁𝜆: Mean solar exoatmospheric irradiances, 

𝜃𝑠: Solar zenith angle in degrees. 

By substituting the spectral radiances obtained from the 

extracted data upon scaling with the scaling factors provided 

for the respective range of wavelengths, (1/40 for the first 70 

spectral components and 1/80 for the rest) the earth-to-sun 

distance [10], mean solar exo-atmospheric irradiances [10] and 

the Solar zenith angle based on the location, date and time of 
which the images were captured [11], the respective 

reflectance values were obtained. Since the image spans across 

a small region and as the zenith angle does not vary 

considerably in the range of interest, the zenith angle was 

assumed to be constant throughout the region of interest. 

Figure 2 shows the spectral signatures of the three classes, 

soil, foliage and water considering reflectance values 

calculated for 198 spectral bands (this was obtained by 

considering 20 training samples from each class).  As 30 of the 

spectral bands had SNR values under 30, associated with their 

radiance measurements in the sensor, the reflectance 

information obtained for these 30 bands were removed at this 
stage, since the accuracies of such low SNR bands cannot be 

guaranteed. The SNR distribution of the Hyperion sensor, 

among the spectral bands is shown in figure 3 [12], and the 

resulting spectral signatures with the low SNR bands removed 

is illustrated in figure 4. 

  

 
Fig 2: Spectral signatures of the three classes, soil, foliage and water 
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Fig 3: Signal to noise ratio of each spectral band in the Hyperion sensor 

 

 

 
 

Fig 4: Spectral signatures of the three classes, soil, foliage and water with the 

low SNR components removed 

 

V. METHODOLOGY 

The part of the image under consideration, shown in figure 

1 (c), contained a total of 175 x 251 (i.e. 43925) pixels. Each 

pixel was classified under ‘soil’, ‘foliage’ or ‘water bodies’, 

based on their hyperspectral image data, using the tools 

available in MATLAB®. As discussed in the pre-processing 

section, the HSI data of each row of pixels in the image is 

tabulated in a separate table in the form of ‘.mat’ files. Each 

table was then loaded to MATLAB® and was stored in the 

form of a two dimensional matrix, representing its pixels and 

their spectral data in its two dimensions. 
The task of classifying each pixel in the image under soil, 

foliage or water, was performed using two different 

approaches. The first approach is a two-stage process where 

pixels containing water, are identified first and the rest of the 

classification is performed in the second stage. The second 

approach is a direct classification of pixels in the image under 

the three classes, soil, foliage and water, based on a measure 

of disparity.   

A. Approach 1:  

First, in order to understand the nature of the dataset and to 

come up with spectral signatures for each of the classes, soil, 

foliage and water, a training sample of pixels were obtained 

from the image with the aid of google maps and the image 

processing toolbox available in MATLAB®. Sixty pixels were 

chosen from the image, containing 20 pixels from each of the 

classes, soil, foliage and water bodies [13]. The spectral 

information of the training set was normalized with respect to 

the standard deviation of each pixel’s reflectance values to 

ensure the dataset used for analysis is unbiased. Mean spectral 

signatures which are depicted in figure 4 for each class was 
then obtained by calculating the mean of the 20 pixels 

belonging to each class, in the training set. 

The spectral signatures of the three substances show that 

soil and foliage have similar spectral characteristics while 

water is slightly deviated from the other two. Due to this factor, 

it was decided that the classification should be done in a series 

of two stages, 

Stage 1: determining the pixels containing water 

Stage 2: determining the pixels containing soil and foliage 

1)  Stage 1:   

Each pixel of this image contains spectral information of 

168 frequency bands, after the elimination of the low SNR 
bands. The spectral information of each pixel was represented 

as a point in the Euclidean space with the frequency bands as 

its dimensions. Data processing in the 168 dimensional 

original space is ineffective in terms of computational power 

as well as feature detection, as it contains both relevant and 

irrelevant information. Hence, the feature space needs to be 

transformed to a lower dimensional space that maximizes the 

separation between pixels in general, while maximizing the 

between class separation and minimizing the within class 

separation. In order to find the transformation matrix for 

dimensionality reduction, Principal Component Analysis 
(PCA) [3], [14], [15] and Fisher Discriminant Analysis (FDA) 

[16]–[18] were performed on the training dataset. The final 

transformation matrix which is used for dimensionality 

reduction contains two transformation matrices. PCA 

generates the first transformation matrix that transforms the 

original feature space to a space where the pixel scatter is 
maximized [15]. 

The PCA equations are as given by, 

𝐶 =  𝐸{(𝑋𝑛 − 𝜇)(𝑋𝑛 − 𝜇)𝑇}                                     (2) 

  𝐶 =  
1

𝑁
∑ (𝑋𝑛 − 𝜇)(𝑋𝑛 − 𝜇)𝑇𝑁

𝑛=1                                      (3) 

 

  𝐶𝑀 =  𝜆𝑀                                                      (4) 

where,  

𝐶 : covariance matrix, (168×168), 

𝐸 : expected value operation, 

𝑋𝑛: vector representing the normalized 168 spectral 

band information (reflectance) of a pixel, (168×1), 

𝜇 : vector representing the mean spectral information 

(normalized reflectance) of all pixels, (168×1), 

𝑁 : number of pixels in the training sample (60), 

𝑀 : eigenvector of the covariance matrix, (168×1), 

 𝜆 : eigenvalue of the covariance matrix. 

 
The eigenvectors corresponding to equation (3) give the 

principal components of a given system. In dimensionality 

reduction using PCA, the directions that have a maximum 

variation of data points, are chosen to create the new Euclidean 

space with reduced number of dimensions. Here the first 20 
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principal components (eigenvectors), corresponding to the 

largest 20 eigenvalues were selected. The objective of finding 

the set of directions that maximizes the scatter of data points 

in Euclidean space with a significant improvement, compared 

to the other directions, which were there in the original space, 

is met by this approach, as the eigenvalue is a measure of the 

variation of data points, in the direction of its respective 

eigenvector. Using this method, the first transformation matrix 
of size 20 x 168 was created. This reduces the feature space 

dimensions from 168 to 20 using the transformation matrix,  

 

                        𝛤1 = [𝑀1 𝑀2 𝑀3 . . .𝑀20]
𝑇                       (5) 

where,  

𝛤1: Transformation matrix based on PCA, 

𝑀1,𝑀2,𝑀3 . . . 𝑀20: eigenvectors of the   covariance 

matrix. 

In the original space, the spectral information of a pixel was 

represented by a vector of size (168×1). Using the above 

transformation, each pixel was transformed into the new space 

of 20 dimensions using  
 

                      𝑉1  =  [𝑀1 𝑀2 𝑀3 . . . 𝑀20]
𝑇𝑉                     (6) 

where, 

𝑉 : Matrix representing the pixels (in columns) in the 

original space, 

𝑉1: Matrix representation of pixels (in columns) in the 

reduced space. 

 

 
Fig 5: Scatter of all the pixels in the image in the reduced space. The point in 

red represents the mean spectral signature of water in the reduced space 

 

 

 
Fig 6: Classification of pixels containing water. Pixels that contain water are 

shown in white while other pixels are shown in black 

 

The second transformation matrix was obtained using FDA. 

FDA maximizes between-class scatter of pixels while 

minimizing the within-class scatter of pixels. FDA equations 

are as given by, 

 

𝑆𝑏  =  ∑ 𝑛𝑖(𝜇𝑖 − 𝜇)(𝜇𝑖 − 𝜇)𝑇𝑙
𝑖=1                                      (7)                              

 

𝑆𝑤  =  ∑ ∑ (𝑥𝑗 − 𝜇𝑖)(𝑥𝑗 − 𝜇𝑖)
𝑇

𝑗∈𝑖
𝑙
𝑖=1                                     (8)  

 

𝜇𝑖  = (1/𝑛𝑖)∑ 𝑥𝑗𝑗∈𝑖                                                     (9)                                                      

 

𝜇 =  (1/𝑛) ∑ 𝑥𝑖
𝑛
𝑖=1                                                    (10) 

 

𝑆𝑏𝜑 =  𝜆𝑆𝑤                                                                         (11)                                      

 

where, 

𝑆𝑏 : between class scatter matrix (20×20), 

𝜇  : vector representing mean spectral information of all 

pixels (20×1), 

𝜇𝑖  : vector representing mean spectral information of the 

pixels of class i (20×1), 

𝑛𝑖 : number of pixels in the training sample belonging to 

class i (20), 

𝑙 : number of classes (3), 

𝑆𝑤: within class scatter matrix (20×20), 

𝑥𝑗  : vector representing the spectral information of a pixel 

In the training sample belonging to class i (20×1), 

𝜆: eigenvalues of the fisher matrix, 𝑆𝑤
−1𝑆𝑏, 

𝜑 : eigenvectors of the fisher matrix, 𝑆𝑤
−1𝑆𝑏 . 

 

The Fisher matrix, 𝑆𝑤
−1𝑆𝑏 of the training dataset was of rank 

two, which resulted in only two real eigenvalues of the Fisher 

matrix. This further implies the similarity between the spectral 

characteristics of pixels containing soil and foliage, resulting 

in a combined class. Hence, the second transformation matrix, 

 

 𝛤2 = [𝜑1 𝜑2]
𝑇                                                                   (12) 

 

where, 

 𝛤 2 : Second transformation matrix,   

   φ1, φ2: real eigenvectors of the Fisher matrix,  

 

was obtained using the first two eigenvectors of the Fisher 
matrix, corresponding to the two real eigenvalues. 

The vectors that represent the pixels in the 20 dimensional 

space is now reduced to a two dimensional space, using the 

second transformation. The transformed pixels in the new 

space are given by, 

 

𝑉2  =  [𝜑1 𝜑2]
𝑇𝑉1                                                               (13) 

 

where, 

𝑉1  : matrix representing the pixels in the 20 

dimensional space , 

𝑉2 : matrix representing the pixels in the 2 

dimensional space, after PCA and FDA.  
 

The scatter plot representing all the pixels in the image is 

shown in figure 5.  

By observing the scatter plot, the pixels belonging to the 

classes ‘water’ and ‘not water (i.e. soil and foliage)’ can be 

identified as two clusters. Using a threshold of 0.485 (based on 
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observations of the scatter plot) as the radius, pixels within a 

circle with its center as the point representing the spectral 

signature of water in the reduced space and the radius 

mentioned previously, were identified as the pixels that 

contain water in them. The figure 6 shows the results of stage 

1, the classification of pixels under ‘water’ and ‘not water’ 

2)  Stage 2: 

 In this stage, the pixels that do not contain water in them 

were extracted which summed up to a total of 39968 pixels, 

for further classification under soil and foliage. Since the 

spectral signatures of soil and foliage were very much similar 

to each other, a different approach needed to be taken.  Spectral 

bands ranging from the 100th to the 168th were chosen for the 

classification process, as in that range, a significant variation 

of spectral characteristics of soil and foliage could be observed 

(figure 4). No further dimensionality reduction was used in this 

stage. Instead, to capture the slight variations of the spectral 

characteristics, spectral clustering was used [19]–[21]. In this, 

the points in the 69 dimensional space, representing each pixel 

of the image (except the pixels containing water) were 
clustered into two groups, based on their similarity in 

Hyperspectral Image characteristics. The first step of this 

method was to generate the disparity matrix. Due to the 

limitations of processing power and the size of matrices that 

MATLAB® could handle, the total of 43925 pixels were 

divided into 6 sets of 5700 pixels, and the 7th set containing 

5768 pixels. The disparity matrix contains the Euclidean 

distance between each pixel pair, corresponding to the row 

number and the column number in each entry of the matrix. i.e. 

The (42,19)th element on the disparity matrix indicates the 

Euclidean distance between the points that represent the 42nd 
and the 19th pixels. Smaller the value in the cell, greater the 

similarity between the two pixels. Figure 7 shows the disparity 
matrix corresponding to the first set (pixels of the first 25 rows).  

 

 
Fig 7: Disparity matrix of the pixels in the first 25 rows of the considered 

region in the image. The darker regions indicate smaller values of distances 

while the lighter regions indicate otherwise 

 

 

The entries in this matrix were normalized by the largest 

value in the matrix, for better accuracy. The Gaussian kernel 

[19]–[21] was then applied to the values in the matrix, to 

generate the affinity matrix, which indicates the closeness of 

pixels i and j, by its (i,j)th element. 

  

The Gaussian kernel is given by, 

 

𝑎(𝑖, 𝑗)  =  𝑒
−

𝑑(𝑖,𝑗)2

2𝜎2                                                    (14) 

                                                      

where,   
a(i,j) : (i,j)th entry in the affinity matrix, 

d(i,j ) :  (i,j)th entry in the disparity matrix. 

  

The value of σ was obtained as follows. As the objective 

was to classify each pixel under soil and foliage, the resulting 

number of clusters obtained from spectral clustering should be 

two. Further, the affinity matrix should have two significant 

eigenvalues. This could be understood by an ideal situation 

where the affinity matrix would be as the one shown below. 

 

[
 
 
 
 
 
 
 
 
1 1 1 1 0 0 0 0 0
1 1 1 1 0 0 0 0 0
1 1 1 1 0 0 0 0 0
1 1 1 1 0 0 0 0 0
0 0 0 0 1 1 1 1 1
0 0 0 0 1 1 1 1 1
0 0 0 0 1 1 1 1 1
0 0 0 0 1 1 1 1 1
0 0 0 0 1 1 1 1 1]

 
 
 
 
 
 
 
 

 

 

It is clear that pixels 1,2,3 and 4 belong to the same class 

and the rest of the pixels belong to another class, according to 

the above affinity matrix. Moreover, the eigenvalues of the 

above matrix are 4,5,0,0,0 and 0. This ideal situation shows 
that the number of clusters equal the number of significant 

eigenvalues of a given affinity matrix. Using this observation, 

in order to find out the optimum value of σ, that would cluster 

the sets of pixels in Euclidean space into two significant 

clusters, (soil and foliage) the eigenvalues of the affinity 

matrix, for a range of σ values were obtained. The second 

eigen gap (difference between the second and the third largest 

eigenvalues) of the affinity matrix for each σ value was plotted 

to find out the optimum value for σ, that would result in the 

two most significant clusters. Since the number of significant 

eigenvalues of the affinity matrix describes the number of 
clusters, the σ value at which the second eigen gap of the 

affinity matrix maximizes, is the value of σ that gives the two 

most significant eigenvalues in the corresponding affinity 

matrix, resulting in two significant clusters of pixels. Figure 8 

shows the sigma selection process 
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Fig 8: Variation of the second eigen gaps of the affinity matrix, for a range of 

σ values. In this case the highest 2nd and 3rd eigenvalue gap is obtained at 

σ=0.2 Hence this value is selected for σ in the next steps of spectral 

clustering 

After selecting the optimum σ, the affinity matrix was 

obtained using equation (14). The eigenvectors of the affinity 
matrix found using, 

 𝐴𝑉 =  𝛼𝑉                                                   (15) 

where,  

𝐴 : affinity matrix of the first 5700 set of pixels,  

𝑉: eigenvectors of A, 

α : eigenvalues of A. 

corresponding to the two most significant eigenvalues were 
stacked as columns in the matrix X as, 

𝑋 =  [ 𝑣1  𝑣2 ]                                                                  (16) 

 

where,  

𝑋 : transformation matrix that maps the pixels to a 

new  space , 

𝑁 : number of pixels in a block, 

v1, v2 : the eigenvectors corresponding to the two 

largest eigenvalues of A. 

which represents each pixel by its rows. Since spectral 

clustering was performed separately on blocks of pixels of the 

image, this would only give the representation of 5700 pixels 
in the new two dimensional space at once. 

Each row of matrix, 𝑋 would be the new representation of 

each pixel in the new two dimensional space. In this reduced 

space, the points representing the pixels would be clustered 

into two groups, based on its hyper spectral characteristics.  

Using K-means algorithm [22], the two clusters were 

identified. The vector that represents the spectral 

characteristics of the mean of the pixels belonging to a cluster 

identified above, in the original space, was then calculated. 

Depending on the Euclidean distance between the mean vector 

of the cluster and the vectors representing the spectral 
signatures of soil and foliage in the original space, each cluster 

was identified as ‘soil’ or ‘foliage’ such that the error in terms 

of Euclidean distance between the cluster mean and the means 

of foliage and foliage. The same classification process was 

repeated for the seven blocks. Finally, each pixel of the image 

which was classified under water, soil or foliage was assigned 

a number based on its content, to recreate the image, based on 

the results obtained by the analysis of hyperspectral 
information of each pixel. 

 

B. Approach 2:  

 

Reflectance values of 168 spectral bands, for each pixel in 

the image, were available after the pre-processing stage. These 

reflectance values of each pixel, were arranged in an array, to 

generate its spectral signature. In order for the classification to 

be solely dependent on the spectral characteristics of the image, 

these spectral signatures were normalized, by removing its 

mean and by scaling it using its standard deviation. The 

resulting normalized reflectance values of each pixel was 

represented as a point in a 168 dimensional space, where the 
dimensions corresponded to the reflectance values of each of 

the spectral bands. 

In order to detect fine features of the image, and due to the 

redundancy of information, the data set was transformed into 

a 20 dimensional space, using Principal Component Analysis. 

(PCA) [3], [14], [15] . To find the transformation matrix for 

the dimensionality reduction, a training sample of 60 pixels 

were chosen, 20 from each class [13], as discussed in approach 

1. The spectral signatures of the three classes based on the 

training sample data (considering the original spectral space) 

are shown in figure 2. The reduced space was obtained by 
using the PCA equations [3], [14], [15] discussed in approach 

1.      

All the pixels including the training sample, were 

transformed to the new reduced dimensional space using 

equation 6. The pixels are now represented as points (vectors 

directing to specific points) in a 20 dimensional space. The 

direction of each of these vectors mainly characterizes the 

spectral behaviour of the pixels. The magnitude of these 

vectors however carries spectral information as well as other 

effects of the sensing equipment, environmental conditions etc. 

Based on that conclusion, the direction of the vectors was 

considered as the basis of the classification algorithm. Thus, 
the vectors representing all the pixels, including the training 

sample, were divided by its magnitude to convert them into 

unit vectors. Now all the pixels are represented as points (unit 

vectors directing to each of the points) on the surface of a 

sphere of unit radius, in a 20 dimensional space. The equation 

for obtaining the unit vectors is given by, 

 

𝝎 =  
𝒘

|𝒘|
                                                                               (17) 

 
where, 

𝝎 : Unit vector in the reduced space 

𝒘 : Original vector in the reduced space 

|𝒘| : Magnitude of the original vector in the reduced 

space 

 

For each of the three classes, soil, foliage and water, three 

reference unit vectors, representing the spectral signatures of 

the three classes, were generated. This was done by calculating 
the mean of the 20 unit vectors corresponding to the 20 training 

samples selected from each class. The difference between each 

vector representing a pixel on the unit sphere and the three 

reference vectors were calculated to form a distance vector for 

each pixel, which is given by 
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𝜹 =   (|𝝎 − 𝝎𝒔|  |𝝎 − 𝝎𝒗|  |𝝎 − 𝝎𝒘|)𝑇                           (18) 

 

where, 

   𝜹: the distance vector 

 𝝎: unit vector representing a given pixel 

 𝝎𝒔 : unit vector representing the reference spectral 

signature of soil 

𝝎𝒗: unit vector representing the reference spectral 

signature of vegetation 

𝝎𝒘: unit vector representing the reference spectral 

signature of water. 

 

Since the requirement is to obtain a measure of affinity, 

the reciprocals of the distances were considered for the 

classification. The vector representing the percentage affinity 

of a given pixel, to the reference spectral characteristics of the 

three classes is given by, 

 

𝜸 =  

1

|𝝎−𝝎𝒔|
1

|𝝎−𝝎𝒔|
+

1

|𝝎−𝝎𝒗|
+

1

|𝝎−𝝎𝒘|

1

|𝝎−𝝎𝒗|
1

|𝝎−𝝎𝒔|
+

1

|𝝎−𝝎𝒗|
+

1

|𝝎−𝝎𝒘|

1

|𝝎−𝝎𝒘|
1

|𝝎−𝝎𝒔|
+

1

|𝝎−𝝎𝒗|
+

1

|𝝎−𝝎𝒘|

                                                     (19) 

 

where,    

𝜸 : percentage affinity vector and the other terms are 
the same as before. 

 

The class of each pixel was determined by the index 

corresponding to the maximum component of the affinity 

vector. 

𝐼 = arg ( 𝑚𝑎𝑥(𝜸))                                                             (20) 

 

where 𝜏  is the index corresponding to the maximum affinity 

percentage of the affinity vector. 

The pixels were labelled according to the following criteria 
where, 

if 𝐼 = 1  the pixel under consideration is classified 

under soil, 

if 𝐼 = 2  the pixel under consideration is classified 

under foliage, and 

if 𝐼 = 3  the pixel under consideration is classified 

under water. 

VI. RESULTS  

A part of the image of a strip along the North Eastern region 

of Sri Lanka, taken by the Earth Observing - 1 satellite’s 
Hyperion sensor was classified under soil, water and foliage, 

based on the HSI data of the image. The portion of the image 

that was considered in the classification consisted of 43925 

pixels in total. The classification was performed in two 

different approaches. The first is a two-stage algorithm, which 

is based on classical feature reduction techniques employed in 

a logical sequence. The results of this approach are tabulated 

in Table III and represented using a pie chart as in figure 9. 

The second approach is a single stage approach which is 

developed upon a disparity measure. The results of the second 

approach are shown in table IV and figure 10. The two 
recreated images of the area, using approach 1 and 2 are shown 

in figures 11 and 12 respectively, in which soil is represented 

in black, foliage in grey and water in white. These recreated 

images are comparable with the original true color RGB image 

in figure 1 (c). 

 

TABLE III 

NUMBER OF PIXELS BELONGING TO EACH CLASS USING APPROACH 1 

Substance Soil Foliage Water 

Number of 

pixels 

15651 24317 3957 

 

TABLE IV 

NUMBER OF PIXELS BELONGING TO EACH CLASS USING APPROACH 2 

Substance Soil Foliage Water 

Number of 

pixels 

13236 27026 3663 

 

 

 
Fig 9: Percentage of each substance in the chosen part of the image using 

approach 1 

 

 

 
Fig 10: Percentage of each substance in the chosen part of the image using 

approach 2 
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Fig 11: Recreated image based on the results of classification using  

approach 1 

 

 
Fig 12: Recreated image based on the results of approach 2  

 

VII    DISCUSSION 

 
Overall, the two approaches give similar results. However, 

approach 1 seems to be capturing minute details of the image, 

as opposed to approach 2. This is evident from the two 

recreated images, as the image recreated from approach 1 

contains more fine details, compared to that of approach 2. 

More specifically, the foliage contents inside the main water 

body in the middle, which are captured by approach 1, are 

absent in the image recreated using approach 2. This can be 

explained by the nature of the two algorithms. The first 

approach is custom made for this dataset as it takes the nature 

of the spectral signatures of the three substances present in the 
dataset in to account, and breaks down the classification 

process into a number of stages accordingly. After the first 

stage in which the pixels belonging to a class, which is easily 

separated are identified, the pixels which can be mixed in its 

representation in the higher dimensional space are analyzed 

more specifically in the second stage. Classical clustering 

algorithms with logical methods of determining its parameters, 

are used in the second stage of the first approach. Hence, the 

advanced analysis and techniques used in approach 1, have 

resulted in the fine details that can be observed in figure11. On 

the other hand, approach 2 uses a simple affinity based 

measure, developed upon the Euclidean distance between the 
vector representation of each pixel and the reference vectors of 

the three classes, to classify each of the pixels under soil, 

foliage or water. This requires a relatively small amount of 

computational power, and can be used on any data set of 

interest.  

As the data set does not provide ground truth information, 

a standard accuracy level cannot be calculated in this work. 

However, a visual validation of results can be carried out by 

comparing the two resulting recreated maps with the real 

image shown in figure 1(c). Also, it could be noted that the 

subtle details of the image such as the small water bodies 

marked as A and B in figure 1(c) have also been identified in 

the proposed technique, which is evident in figures 11 and 12.  

 

As the size of a pixel is 30m x 30m, it is highly likely that 

a single pixel could contain more than one substance. In this 

case, the affinity vector introduced in approach 2 can be used 
to calculate the approximate percentage of each substance 

(soil, foliage and water) in a given pixel which contains a 

mixture of two or more substances [23]. 

 

 

VIII    CONCLUSION 

 

Using hyperspectral imagery in order to map land-cover 

maps is beneficial in many ways as it could be used as a basis 

to obtain useful information for natural resource and 

ecosystem service management, assessing the human induced 

and natural drivers of changes in land, foliage or water bodies 
and even in identification of fine details such as the 

distribution of minerals in an area. Use of hyperspectral image 

data in land cover mapping results in better classification as it 

contains fine data which is necessary for fine classification. 

The image considered in this paper consisted of 198 spectral 

bands which had calibrated data. Hence, it was possible to 

select the most useful spectral bands for a better classification. 

However, the excess information could also be challenging, 

especially in cases with computational limitations. In this 

paper, two algorithms were presented to classify each pixel of 

the image under soil, foliage or water. The first algorithm was 
based on classical dimensionality reduction and classification 

techniques such as PCA, FDA, spectral clustering and K-

means that have been used in a logical manner as explained in 

the body of the paper. Based on this algorithm, the pixels of 

the image were classified in two steps. First the pixels 

containing water were identified. Thereafter, pixels containing 

soil and foliage were classified. This two-stage approach was 

taken due to the nature of the hyperspectral data of the pixels 

which was observed by the spectral signatures obtained by the 

training samples and was justified based on the rank of the 

Fisher matrix. The second classification algorithm was based 
on a measurement of affinity between the vector 

representations of each pixel and the three reference vectors 

corresponding to soil, foliage and water. Both the approaches 

resulted in recreated images similar to the true RGB image. 

However, the first approach was capable of identifying the fine 

details of a given hyperspectral image whereas the second 

approach failed to achieve that. On the other hand, the first 

algorithm was custom made for this data set and required high 

computational power due to its higher complexity. The second 

algorithm however could be used on any hyperspectral image 

dataset with less amount of computational power. Hence, it 

could be concluded that, according to their merits and 
demerits, the algorithm or the concepts behind the algorithms 

that suit the best for a given classification task may vary 

depending on the application and the constraints associated 

with it.   
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