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Abstract— Drug-drug interactions (DDIs) are responsible for 

many serious adverse events; their detection is crucial for the 

safety of the patient but also it is very challenging. In recent 

years, several drugs have been withdrawn from the market due 

to interaction related Adverse Events (AEs). 
 

This study describes a model which can be used to predict novel 

DDIs based on the similarity of drug interaction candidates to 

drugs involved in established DDIs which can be used in a large 

scale to discover novel DDIs. This model is mainly based on the 

assumption that if drug A and drug B interact to produce a 

specific biological effect, then drugs similar to drug A (or drug 

B) are likely to interact with drug B (or drug A) to produce the 

same effect. We have created a drug network using the 2011 

snapshot of a widely used drug safety database which utilizes 

352 distinct drugs and contains 3 700 interactions. Then, it was 

used to develop the proposed model for predicting future DDIs. 

The target similarities and side effect similarities (P-score) were 

calculated for all selected pairs of drugs. Then, it was used to 

develop the proposed model for predicting future DDIs.  The 

proposed model mainly follows two distinct approaches: ‘Which 

forces the preservation of existing (known) DDIs’ and ‘Without 

forced to preserve existing DDIs.’ Underneath each of these 

approaches, three different techniques: target similarity score, 

side effect similarity (P-score) and resulting score were used to 

retrieve novel DDIs. 

 

The proposed model was evaluated using the Drugbank 2014 

snapshot as a gold standard for the same set of drugs which 

produce novel DDIs with an average accuracy of 95% and 92%, 

average AUC (Area Under the Curve) of 0.9834 and 0.8651 

under each of these two approaches respectively. 

 

The results presented in this study demonstrate the usefulness of 

the proposed network based drug-drug interaction methodology 

as a promising approach. The method described in this article is 

very simple, efficient, and biologically sound. 
 

Keywords— Drug-drug Interactions, Adverse Events, Target 

similarity score, P-score.  
 

I. INTRODUCTION  

dverse DDIs are a serious health issue that can result in  

significant morbidity, mortality and also a leading 
source of treatment inefficacy. Due to interaction related AEs, 

several drugs have been withdrawn from the market in the 

past few years. For example, Terfenadine (Seldane®) in  
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February 1998 and Cisapride (Propulsid®) in January 2000. 

According to statistics provided by the National Health and 

Nutrition Examination Survey, over 76% of elderly 

Americans are on two or more drugs [2]. Unfortunately, 
adverse drug events (ADEs) are common and account for 770 

000 injuries and deaths in each year, and drug interactions 
account for as much as 30% of these ADEs [2]. Thus, there is 

a practical necessity to identify DDIs in the pre-stage of the 

drug development process. However, detection of DDIs is a 

very difficult task. Therefore it is more critical to develop 

effective methods for predicting DDIs years in advance. 

DDIs may be categorized into various criteria depending 

on the task. Mainly, DDIs can be classified into two main 

categories: severity level and the underlying DDI mechanism 

[1]. Each of these categories can be further categorized into 

three fundamental sub categories. In terms of severity, DDIs 

can be categorized into minor, moderate and severe [1][7]. 
Minor DDIs are considered to have a slight clinical 

significance and typically they are only called for routine 

patient monitoring. Moderate DDIs have a higher clinical 

significance and may require dosage changes and closer 

monitoring. Major DDIs can lead to serious adverse effects 

and should typically be avoided. In terms of underlying 

mechanism, DDIs can be categorized into Pharmaceutical, 

Pharmacokinetic (PK) and Pharmacodynamics (PD) [1][3]. 

Pharmaceutical interactions occur due to the chemical or 

physical incompatibility. PK DDIs occur when one drug 

interferes with the absorption, distribution, metabolism, or 

elimination of another drug, leading to changes in the plasma 
concentration of the affected drug. PD interactions occur 

when one drug interferes with a second drug at a target site, 

leading to additive or subtractive effects on the drugs 

involved. 

Typically, there are two major stages of identifying DDIs: 

pre-market and post market [1]. These identifications include 

variety of medical laboratory experiments and computer 

based simulation techniques. Even though there are plenty of 

methods exist, when it comes to practical scenario most of 

the crucial DDIs go undetected in the phase of pre-market 

stage, according to the evidence of interaction related post 
market warnings and withdrawals. There are several 

statistical methods exist to identify whether the combination 

of two or more drugs are associated with an increased risk of 

certain AEs. Most of these statistical approaches depend on 

analysing results of post market data such as insurance claim 

databases, spontaneous reports and other available electronic 

medical records [8][9][10][11]. The main weakness of these 

methods is, they rely on waiting for sufficient post-market 

evidence to accumulate. It is a process which is highly time 

consuming. By this time, there is a higher probability that 

various people could risk their lives due to interaction related 

AEs. Additionally, these methods also suffer from the 
problem of vastness and the space of possible drug-drug AE 

A  
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combinations. Thus, there is a practical need for a 

methodology that could identify adverse DDIs promptly in 

the arena of the drug development process. 

To meet this need, we propose a method based on the 

network structure. This network is constructed based on 

already known DDIs, as well as various intrinsic and 

taxonomic properties of drugs. In this network, nodes 

represent drugs and edges represent interactions among the 
drugs. The main objective of the predictive model is to 

identify missing edges (unknown DDIs) in the constructed 

network. The process of identifying new DDIs using target 

similarity and side effect similarity (P-score) is based on the 

basic idea, if drug A interacts with drug B and drug C is 

similar to A, then C should also interact with B (the argument 

also follows if A is replaced with B). Thus, by combining the 

knowledge of known interactions with target similarity and 

side effect similarity, it is possible to identify new 

interactions. We have also integrated the results which were 

obtained through target similarity and side effect similarity as 

resulting score to investigate the impact of predicting new 
interactions based on two distinct approaches: forces the 

preservation of existing (known) DDIs and without force to 

preserve existing DDIs. 

II. RELATED WORK 

The interaction among the drugs play an important role in 

terms of drug development and the drug discovery. 

According to the study, many patients are relying on multiple 

medicines, especially older adults often take more than one 

drug at a time. Therefore, there is a higher chance that they 

could suffer from the effect of significant cause of Adverse 

Drug Reactions (ADRs), which occurs mainly due to DDI.  
Prior identification of DDIs is mainly useful in two distinct 

ways: (1) to prevent occurring adverse event and (2) to take 

the advantage of the beneficial effects of drug interactions, 

which provides greater total effect than the sum of the 

individuals of two (or more) drugs. Thus, development of 

predictive tools to help behaviour of possible DDIs is of great 

interest to pharmaceutical companies and regulatory 

authorities, such as the United States Food and Drug 

Administration (FDA). 

To support this need, scientists have come up with multiple 

computational based approaches to predict DDIs. These 
researches are based on two fundamental approaches known 

as: knowledge based and similarity based. Often, knowledge 

based approaches are focused on the post-market stage and 

the similarity based approaches are focused on the pre-market 

stage and the initial part of the post-market stage in the drug 

development process. However, both approaches suffer from 

several limitations such as the necessity to distinguish drug 

classes and the inability to handle novel drugs for which 

limited reports exist [12]. 

 

Knowledge Based Approaches 

 
Knowledge based methods predict DDIs based on the 

information from the numerous resources such as scientific 

literature [3], Drug-specific patient registries, administrative 

claims databases [14] and an electronic medical record 

database [4][14]. It also retrieves the information from the 

spontaneous reporting systems such as US Food and Drug 

Administration’s Adverse Event Reporting System (AERS) 

[2][11][13] by using the technologies like the semantic web 

[15] and linked data. 

A. Adverse event Reports 

This approach mainly focuses on retrieve DDIs based on 

the adverse event reports. In the study which was carried out 
by Nicholas et al., [2], they have used a novel signal 

detection algorithm to identify hidden DDIs signal from 

adverse event reports. Fundamental concept of their study is 

to divide the severe adverse events (SAE) to eight distinct 

classes based on their clinical significance; cholesterol, renal 

impairment, diabetes, liver dysfunction, hepatotoxicity, 

hypertension, depression, and suicide. Then, separate models 

were created for each class by using supervised machine 

learning methods. Then, using those models, they have 

discovered hidden signals for one of the eight AEs. Since 

there is no standard for drug interaction AEs, they have used 

two main strategies to label the appropriate drug-pairs. 
According to the first approach, they labelled drug-pairs as 

“positive” if at least one of the drugs in the pair was known to 

be associated with the AE (i.e., the single drug-event 

associations). In the second strategy, they labelled drug-pairs 

as “positive” if the pair is known to interact according to a 

list of clinically significant interactions with selected data. 

B. Semantic Web and Linked Data Technologies 

A different study was carried out by Pathak et al., [7] to 

identify DDIs by applying linked data principles and 

semantic web technologies for the patient electronic health 

records. The main idea of using semantic web technologies is 

to facilitate data to be manipulated by machines not just for 

the display, but for automation, integration, and reuse across 

various applications. The retrieval process of appropriate 

DDIs data from the electronic health record databases was 
conducted by using resource description framework. 

The major problem of knowledge based approaches is that 

they are relying on waiting for sufficient post-market 

evidence to accumulate. This is a process which is highly 

time consuming. Therefore, the ultimate DDIs prediction 

results cannot be generated in the pre-market or in the initial 

post-market stages in the drug development process. This 

delay leads to waste of both time and money which are being 
allocated for the drug development process. In the worst-case 

scenario this might be a reason for the increase patient's 

deaths. 

    Knowledge based approaches are also suffering from the 

practical problems such as lack of reliable data. Due to 

privacy, security, ethical, policy and issues with 

confidentiality, patient data is closely guarded and monitored 

from unauthorized access within institutional firewall 

boundaries. Even though the data is found, there is no 

guarantee whether they are fake or accurate. 

 

Similarity Based Approaches 

 

Similarity based methods are predicting DDIs based on the 

measurement of the similarity of drug information. To 

identify similar drug pairs, researchers have used numerous 

similarity measures like: Chemical-based, Ligand-based, Side 

effect based, Annotation-based, Sequence-based, Closeness 

in a PPI network and Gene ontology based. Among these 

measures, the last three measures are gene related. There are 
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various researches which were being carried out to retrieve 

the drug similarity information such as; utilizing multiple 

drug-drug similarity measures to predict DDI: Inferring Drug 

Interactions (INDI) [12], target overlap [16], S-score [3], P-

score [17], target distance, C-score [18], Indication overlap 

[19] and the molecular structural similarity [6]. Among these 

approaches, target based methods (target overlap, target 

distance and S-score) are comparatively better than using 
indication overlap and the C-score methods [3]. 

A. Predictive Pharmacointeraction Networks 

A novel approach was developed by Cami et al [1] named 

Predictive Pharmacointeraction Networks (PPINs) to predict 

DDIs. This method utilizes known DDIs along with other 

intrinsic and taxonomic properties of drugs to predict novel 

DDIs. Based on the known drug-drug interaction data, a drug 

network was constructed. Then those data is used to construct 

a set of covariates and to develop predictive logistic 
regression and generalized mixed model [1]. The main idea 

of this model is to predict the probabilities for each non- edge 

in the already constructed drug network. Then, based on the 

resulted probability values, all the non-edges with higher 

probability values were considered as a successful edge in the 

network. Then, those results were used to predict novel DDIs. 

In simple term, interacting drugs were represented by two 

end nodes of the newly drawn edges. 

B. Bayesian Model Averaging Approach 

    This is the approach which was developed by Guimera et 

al. They have introduced a network inference algorithm to 

predict uncharacterized DDIs [20]. The algorithm that they 

used is highly unsupervised and parameter free. Since their 

algorithm is highly abstract, it takes known DDIs as its only 

input. This algorithm does not require any biochemical or 

pharmacological information as inputs. The prediction is 

performed based on the technique stochastic block models 

[21][22], node partitioning by their cellular function. 

According to this model, the interaction between any pair of 

nodes depends only on the groups to which they belong. 

C. Interaction Profile Fingerprints 

Interaction profile fingerprints (IPFs) [5] is another 

successful way of predicting DDIs. This model consumes 

IPFs to measure the similarity of drug pairs and generate 

presumed DDIs from the non-intersecting interactions of a 

pair. The concept of IPFs is similar to the molecular structure 

fingerprint [23]. After identifying IPFs, the similarity 

between fingerprints are calculated using JC (refer Fig. 1 for 
example of IPFs calculation). 

D. Target Based Methods 

   This is a technique which is used to identify DDIs based on 

the targets that it’s going to hit. There are several methods 

which are being used to identify DDIs based on its target. 

 

Target Overlap 

Target overlap is a technique with the strategy of connecting 

two drugs if both drugs share at least one target protein [27]. 

In simple terms, target overlap is based on the basic idea that 

if drug A hits target proteins (X, Y and Z) and the drug B 

also hits the target proteins (V,W and X) drug A and drug B 
is said to be somewhat similar, because they share at least 
one target protein (according to this example it is X). 

 

 

Fig. 1 Examples of interaction profile fingerprints (IPFs) calculated for the 

drugs oxybutynin and dicyclomine [5] 

 

Jaccard Coefficient 
 

The Jaccard coefficient (JC) (also named as Tanimoto 

Coefficient (TC)) [28]. Jaccard Coefficient is a statistic used 

to compare the similarity and diversity of sample sets. 

Jaccard coefficient measures similarity between finite sample 

sets, and is defined as the size of the intersection divided by 

the size of the union of the sample sets. JC is a value that can 

be varied in a range of 0 to 1 [0 ≤ J(A,B) ≤ 1], where 0 means 

maximum dissimilarity and 1 means maximum similarity. JC 

for given target representations A and B can be calculated as 

follows: 

 
S-score 
 

The S-score reflects the tightness of a connection between 

two target-centered systems in the network. This value 

mainly depends on two parameters: number of edges 

connecting the genes in these two target-centered systems 

and the similarity in expression patterns across tissues [3]. 

The S-score can be calculated as follows: 

 
where , s and n represent the mean, standard deviation and 

the number of the cross-tissue expression Pearson’s 

correlation coefficient (PCC) of edges connecting two drugs-

centered systems, respectively; μ represents the average PCC 

of all edges in the network as background. In addition, if two 

target-centered systems share a gene, an artificial edge with 

PCC of 1 is added between the two systems. 
 

P-Score 
 

The P - score is a technique with the strategy of connecting 

two drugs by their side effect similarity. Identifying drug side 

effect is a complex phenomenological observation that is 

based on various molecular scenarios, including interaction 

with the primary or additional targets (off-targets) [17]. These 
off-targets are being used to identify similar side effects of 

unrelated drugs. 
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Bayesian probabilistic model 
 

Bayesian probability is one of the different interpretations of 

the concept of probability. Bayesian inference derives the 

posterior probability because of two precursors, a prior 

probability and a "likelihood function" derived from a 
probability model for the data to be observed [28]. Bayesian 

inference calculates the posterior probability based on the 

Bayes rule, 

 

 
 

Where, | denotes conditional probability, H denotes any 

hypothesis whose probability may be affected by the data, E 

denotes evidence corresponds to new data that were not used 

in computing the prior probability, P(H) denotes the prior 

probability, P(H|E) denotes the posterior probability, P(E|H) 

denotes the probability of observing E for a given H and P(E) 

denotes the marginal likelihood. 

E. Inferring Drug Interactions 

Another method of detecting DDIs is by using the 

Inferring Drug Interactions (INDI) [12]. INDI algorithm is 

designed based on two main objectives (1) predicting both 

new CYP-related DDIs and non-CYP-related DDIs and (2) 

developing a general strategy that allows predicting 

interactions of novel drugs for which no interaction 

information is currently available. This algorithm mainly 

relies on three fundamental steps (i) construction of drug–

drug similarity measures; (ii) constructing classification 

features based on these similarity measures; and (iii) 
application of the classifier to these features to predict new 

DDIs (refer Fig. 2 for INDI steps) 

This algorithm mainly relies on chemical and side-effect 

similarity of applicable drugs as its inputs, and based on 

those results novel prediction for DDIs were generated. 

F. Molecular Structure Similarity 

Molecular structure similarity is a technique which is used 

to identify similar drug pairs by considering the structural 

similarity of the drugs [24][25]. By using the knowledge of 
known interactions with structural similarity, it is possible to 

identify new DDIs [6][26]. In simple terms, structural 

similarity is based on the basic idea that if drug A interacts 

with drug B, and drug C is structurally similar to A, then C 

should also interact with B (the argument also follows if A is 

replaced with B). The identification of structural similarity is 

a three-step process: (1) collecting and processing drug 

structures, (2) structural representation and similarity 

measures, computation, and (3) data representation 

respectively [6]. Then these structural similarity calculations 

are used along with the established drug interactions to 
predict novel DDIs.  

    The proposed methodology mainly focused on 

implementing a novel network based model to predict DDIs. 

The main idea behind this methodology is to utilize the 

findings of two distinct approaches: target similarities and the 

P-score values to predict DDIs. This study also focuses on 

generating a new resulting matrix by integrating results 

obtained through target similarity matrix and the P-score 

value matrix. 

 

 

 

Fig. 2 Steps of INDI Algorithm [12] 

III. METHODOLOGY 

   The methodology of this study consists of seven major 

steps: data acquisition, pre-processing, graph construction, 
identify similar drug pairs, predicting new DDIs, construct 

resulting matrix and output of final network. 

A. Data Acquisition 

This research is mainly based on three types of datasets: 
FDA approved drug-target association data, FDA approved 
known DDIs data (2011 and 2014 snapshots of DrugBank 
database) and P-Score values. 

The DDI data (both 2011 and 2014 snapshots) were 

downloaded from the DrugBank1  database. FDA approved 

drug-target data and P-score values were obtained from the 

research “Systematic Prediction of Pharmacodynamic Drug-

Drug Interactions through Protein-Protein Interaction 

Network” which was done by Huang et al., 2013 [3]. This 

dataset is published online at their personal website2. 

B. Pre-processing 

The FDA approved drug target association data, FDA 

approved known DDIs (2011) dataset and P-score values 

were downloaded in text (.txt) file format. FDA approved 

known DDIs (2014) dataset was downloaded in XML file 

format. Mainly, the data pre-processing consists of four main 
phrases, 

                                                
1 http://www.drugbank.ca 
2 http://www.picb.ac.cn/hanlab/DDI 

http://www.drugbank.ca/
http://www.picb.ac.cn/hanlab/DDI
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 Retrieve intersection of DDIs from all available datasets. 
There is a huge amount of DDIs available in the 
downloaded datasets: FDA approved drug target 
association data, FDA approved known DDIs (2011) 
dataset and P-score values. There were instances where a 
DDI is available in a selected dataset, but unavailable in 
the other dataset/s. In such instances, the model will 
produce erroneous outcomes due to the unavailability of 
required figures. Thus, to avoid such mistakes we have 
retrieved only the intersect DDIs from the available 
datasets. 

 Retrieve appropriate data columns from an existing 
dataset. Downloaded datasets consist of several 
additional data fields which were not required for the 
proposed model. Such fields were simply ignored at the 
preprocessing stage to make the proposed model more 
optimize. 

 Eliminate the duplicate records. There were some 
instances where the records were duplicated. In such 
instances, additional records were eliminated by retaining 
only distinct records. Main objective of the elimination 
process is to avoid any unnecessary calculations. 

 Process the XML to retrieve latest known DDIs (2014 

snapshot of Drugbank database). Downloaded XML 

consists of a vast amount of experimentally discovered 

DDIs up to the October 2014. Thus, only required set of 

interactions were filtered out at the pre-processing stage 

to construct the latest known DDIs network. The 

intension of this approach is to make the evaluation 

process more optimize. 

C. Graph Construction 

The drug network was constructed based on the pre-

processed FDA approved known DDIs (2011) data. To 

construct the graph, known DDI data were represented using 

an adjacency matrix. To construct the DDI network, the 

above mentioned dataset with the set of known DDIs was 

transformed into a binary matrix M1 (with 352 rows and 352 

columns). Where a matrix cell value of 1 represents a known 

interaction between a pair of drug and a value of 0 represent 

no interaction exists between selected pair of drug. Values on 

the diagonal of the matrix were set to 0, because the 

interaction of a drug by itself was omitted. 

D. Identify Similar Drug Pairs 

As a prerequisite for the prediction of DDIs, similar drug 
pairs were identified by using two distinct values: 

Target Similarity Score: The target similarity score was 

calculated based on the available FDA approved drug target 

association data. This score was generated using the widely 

applied Jaccard coefficient (JC). The JC between the selected 

pair of drug was calculated as follows, 

    First, the number of common target protein count 

(intersection) was obtained for the selected drug pairs. Then, 

the number of all possible target protein count was calculated 

without considering duplicates (union). Then, the retrieved 
intersection target protein count was divided by the union of 

the target protein count to calculate the JC value. Formula is 

as follows, 

 

J(A, B)A BA B 



    This calculation guarantees to give an answer between zero 

and one. Since the generated scores were always in between 

zero and one it is easy to manipulate the scores and to store 

them in an adjacency matrix for further calculations. The first 

instance of the similarity matrix M2 was constructed to 

capture the TC measure of similarity between pairs of drugs 

(the matrix cell value denotes the TC between pairs of drugs). 


P-score: P-score values were directly taken from the research 

which was done by Huang et al., 2013 [3]. Since the obtained 
P-score values were spread in a vast range, it has been 

normalized using the tool Matlab in to a range of zero to one. 

The second instance of similarity matrix M2 was constructed 

by using normalized P-score values. 

E. Predicting New DDIs 

After the preparation of required inputs for the prediction 

model (established DDIs matrix, target similarity score 

matrix or P-score matrix) prediction process for novel DDIs 
is a three-step process in terms of technical perspective: 

Multiply matrixes (M1, M2), Retained the maximum value 

for each entry and Symmetric transformation considering the 

high value for each pair. 

     1.) Multiply matrix M1 (established DDIs matrix on 2011 

dataset) and M2 (target similarity score matrix or P-score 

matrix) [M3 = M1xM2 (refer step 3a in Fig. 3)]. 

  

     2.) Retained the maximum value for each entry (refer step 

3b in Fig. 3). 

The same interaction can be generated at different times 

based on similarities obtained from different pairs, in such 
occurrences only the maximum value was retained for each 

entry, so only the predicted interaction with the highest TC 

value was considered. 

 

     3.) Symmetric transformation considering the high value 

for each pair (refer step 3c in Fig. 3). 

     The symmetric transformation was carried out to obtain 

the final M3 matrix, considering the highest value for each 

pair of drugs (note that the matrix represented in 3b of Fig. 3 

is not a symmetric matrix). In the example shown in Fig. 3, 

interaction 1-2 and 2-3 from M1 were retrieved in M3 with a 
TC>0.75. Interaction 1-4 was retrieved by the model with a 

low score (TC=0.3). The model was also predicted the new 

interaction 3-4 (TC=0.9). 

F. Construct Resulting Matrix 

Resulting matrix was constructed using the results which 

were obtained through target similarity matrix and P-score 

matrix (corresponding 3c matrices which was generated by 

the model). In the resulting matrix, cell value denotes the 

maximum TC which was generated as the result (step 3c) by 
either target similarity matrix or P-score matrix. 

G. Output of Final Network 

Final output networks were constructed by considering TC 

values which were indicated in step 3c as a threshold value. 

Where the threshold in a range of 0 − 0.5 was considered as a 

low strength interaction, interaction in the range of 0.5 − 0.75 

was considered as a moderate strength interaction and finally 

interaction in the range of 0.75 − 1.0 was considered as a 
high strength interaction (refer Table 1 for the newly obtained 

interaction (X) strength ranges). 
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TABLE I 

THRESHOLD VALUES TO MEASURE INTERACTION STRENGTH 

Interaction Strength Range 

High 0.75X1.0 

Moderate 0.5X<0.75 

Low 0<X<0.5 

 

Based on the above threshold values, final output networks 

were created by considering two different approaches: 

 The model was forced to preserve the previously 

known DDIs. 

    This approach uses the technique to gain the final output 

results without sacrificing the previously known DDIs. In this 

approach, the mechanism is followed to set the interaction to 

one in the final output matrix, if that interaction exists in the 

previously known DDIs dataset in 2011, but not retrieved as 

a predicted interaction. This approach was performed based 
on the assumption that there is a very less probability that the 

currently existing interaction may expire in the future. 

 The model was not forced to preserve the previously 

known DDIs. 

Without forced to preserve existing DDIs, the approach 

was performed by assuming that there is a probability that the 

currently existing interaction may expire in the future. In this 

approach, the model was freed to sacrifice previously known 

interactions. Thus, the final output network was solely 

constructed based on the results of target similarity matrix, P-

score value matrix and the resulting matrix based on the 
threshold values. 

    Three different final output networks were constructed for 

each of these two-distinct approaches independently. These 

networks were generated based on the results of target 

similarity score matrix, P-score value matrix and the resulting 

matrix. Therefore, altogether six different final output 

networks were generated because of this process. 

 

 

Fig. 3 Steps to predicting DDIs [6] 

Figure 1: Process of predicting DDIs is a combined result of 

the DrugBank interaction database 2011 snapshot and target 

similarity score / P-score. In step 1, interaction matrix M1 

was created. Where, the interactions in DrugBank were 

represented as ‘1’. In step 2, the similarity matrices M2 were 

created based on the Tanimoto coefficient values and P-score 

values for two independent instances. In step 3, matrix 

multiplication (M1xM2) was performed. Maximum value for 

each entry was retained. The final matrix M3, was formed 

using the technique symmetry based transformation. In all the 
matrices values in the diagonals were set to zero, because the 

interaction of a drug with itself was not considered.  

    In the final matrix (3c) red colour figures denote 

interactions, which were previously known and also obtained 

through the prediction model. Green and blue colour figures 

represent newly predicted drug interactions. Blue colour 

figures indicate interactions with higher confidence and green 

colour interactions can be considered as lower confidence 

interactions. 

H. Evaluation 

The accuracy of the model was evaluated by comparing 

the predicted results from the proposed model for various 

threshold values against the DrugBank database 2014 snap 

shot. The overall performance was summarized using the 

measures: accuracy, precision, recall and F-measure. The 

receiver operating characteristic (ROC) curve has been 

generated for more accurate interpretation of model 

performance. Also, the obtained results from these two 

approaches (force to preserve existing and without force to 

preserve existing DDIs) were compared with each other for 
detail exploration using the above discussed measures. 

IV. RESULTS 

Approach 01: Results Obtained Through the Model 

Forced to Preserve the Existing DDIs. 

 

This section explores the results which were obtained by 

target similarity matrix, P-score matrix and resulting matrix 

using both evaluation measurement matrices and ROC curves 

when the model is forced to preserve the existing DDIs. 

These results were generated by changing the threshold 

values accordingly. Different threshold values generate 

different prediction outcomes with different confidence 
strengths. 

A. Evaluation Measurement Matrices 

In terms of target similarity matrix (refer Table II A), the 

accuracy increases along with the threshold value which 

means the prediction result of a selected DDI always tends to 

give better accuracy, when the model was executed with a 

higher threshold value. When considering the precision and 

recall figures, it shows that the model gives a very higher 
recall, but comparatively lower precision. The reason for a 

higher recall was that the model gives a lower number of 

false negatives. The reason for having such lower precision 

was due to the higher false positives. Since this is a 

prediction model having such false positive might be 

acceptable, because it may be an indication of novel DDIs, 

that might not experimentally have discovered yet in the 

current context. Also, both precision and recall figures get 

increased along with the threshold value. It’s an indication 

that predicting DDI with a higher confidence level always 

tends to give better results. F-measure figures also get 

increased along with the threshold value and this 



7                                                                                                                                    S. D. L Gunawardena#1, A. R. Weerasinghe#2, M. W. A. C. R. Wijesinghe#3

   

July 2018                                                                                                                                      International Journal on Advances in ICT for Emerging Regions  

measurement indicates the overall impact of precision and 

recall figures of proposed prediction model. 

According to the results of P-score matrix (refer Table II 

B), the accuracy was slightly increased when the threshold 

gets increased from 0.25 to 0.5, but it has no impact on the 

accuracy when threshold gets increased from 0.5 to 0.75.  It 

indicates that the accuracy gets saturated when the threshold 

reaches up to its maximum. The recall was constant 
throughout the process. This was due to fixed true positives 

and false negatives for all threshold values considered. The 

precision gets increased along with the threshold value and 

get saturated when the threshold value reaches up to 0.5. F-

measure figures were also being in an acceptable level. This 

explains the scenario both precision and recall values were 

acceptable. 

    When considering the output of the resulting matrix (refer 

Table II C), the accuracy has a direct proportional 

relationship with the threshold value. Recall slightly 

decreased and precision figures increased when the threshold 

value increased. Recall figures were higher compared to the 
precision. The reason for such higher recalls was due to the 

lower false negatives. When considering the precision figures, 

they were still lower even though the threshold reached 0.75. 

The reason for such lower precision was due to the higher 

false positives. Having such false positives might acceptable, 

because it may consist of novel DDIs, that might not be 

experimentally discovered yet. F-measure figures were also 

get increased along with the threshold value.  It clearly 

indicates that the model tends to give higher recall and 

precision values when the threshold values get increased. 

TABLE III 
EVALUATION MEASUREMENTS FOR ALL MATRICES – APPROACH 01 

Force to Preserve Existing DDIs 

A) Target Similarity Matrix 

Evaluation 

Measurements % 
T = 0.25 T = 0.50 T = 0.75 

Accuracy 83.00 91.26 96.40 

Precision 14.70 25.12 45.00 

Recall 99.02 98.91 98.74 

F-Measure 25.61 40.04 61.62 

B) P-Score Matrix 

Accuracy 98.51 99.89 99.89 

Precision 66.80 97.57 97.57 

Recall 98.63 98.63 98.63 

F-Measure 79.66 98.10 98.10 

C) Resulting Matrix 

Accuracy 82.50 91.26 96.40 

Precision 14.34 25.12 45.00 

Recall 99.02 98.91 98.74 

F-Measure 25.06 40.07 61.82 

B. ROC Curves 

All the coordinates to draw ROC curves for all approaches 

for the approach of forced to preserve the existing DDIs, 

were generated by varying the threshold value of the 

proposed model in a range of 0.1 to 1.00 with a step size of 

0.1.  

    According to the ROC curve (refer Fig. 4 - Blue colour 

curve), plotted ROC was very much closer to the upper left 

corner which gives AUC of 0.9792. It clearly indicates that 

the proposed prediction model gives more valuable results. 

With respect to the ROC curve for P-score matrix (refer 

Fig. 4 - Green colour curve), it has given a very higher true 

positive rate even from the very beginning (soon after false 

positive rate is greater than zero). The reason for such 
behaviour might be due to the very low number of false 

negatives and the very higher number of true negatives. The 

obtained curve was well ahead the diagonal line and very 

much closer to the 1.00 by giving an AUC of 0.9918.  

When considering the ROC curve which was plotted for 

resulting matrix (refer Fig. 4 - Red colour curve), resulting 

ROC curve gives AUC of 0.9791 which was very much 

closer to one. It’s a good indication of better results of this 

ROC as well. 

 When comparing the ROC figures obtained for each matrix 

type: target similarity, P-score and resulting matrices gives 

AUC figures as 0.9792, 0.9918 and 0.9791 respectively. This 
means P-score matrix generates the best results in terms of 

AUC. The target similarity matrix and resulting matrix gave 

almost similar AUC figures. Thus, there is no considerable 

impact on integrating the results of the two types of matrices 

to have a better prediction result, because it has not given a 

higher AUC value in the resulting matrix as expected for the 

force to preserve existing DDIs approach. 

 

 

Fig. 4 ROC Curves for all matrices - Approach 01 

Approach 02: Results Obtained Through the Model 

Without Preserving the Existing DDIs. 

This section explores the results for the same set of matrix 

types: target similarity matrix, P-score matrix and resulting 

matrix, using a different approach named without force to 

preserve the existing DDIs. As same as the previous approach, 

this approach also addresses the evaluation methodology 

using two fundamental evaluation techniques named 

evaluation measurement matrices and ROC curves. 

A. EVALUATION MEASUREMENT MATRICES 

In terms of target similarity matrix (refer Table III A), the 

accuracy increased along with the threshold value. It’s an 

indication that the prediction result of a selected DDI always 
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tends to give better accuracy, when the model was executed 

with a higher threshold value. In terms of precision and recall 

figures it clearly indicates that the proposed model tends to 

generate higher precision when threshold value increased, but 

recall figures decreased when threshold values increased. The 

reason for such behaviour was due to the reduction of false 

positives when the threshold value increased. The proposed 

model generates lower recall figures due to higher false 
negatives when the threshold value increased. Even though 

the threshold value was significantly higher, precision figures 

were not improved up to the expected level (precision was 

29.37 even the threshold reached 0.75). The reason for such 

behaviour was, due to comparatively higher false positives 

even though the threshold reached a higher value. In terms of 

a prediction model, having such false positive might be 

acceptable because it might denote the novel DDIs that might 

not have experimentally discovered yet. Eventually, the F-

measure increased along with the threshold value, but could 

not fully satisfy with the increased amount, because F-

measure was 36.88 even when the threshold is 0.75. The 
reason for such behaviour was due to the slower growth of 

precision and decrement of recall when threshold increased. 

    According to the results of P-score matrix (refer Table III 

B), the accuracy was slightly increased when threshold 

increased from 0.25 to 0.5. But there was a slight reduction in 

accuracy when threshold increased from 0.5 to 0.75. It 

implies that the accuracy reaches its peak value and then 

decreases continuously when the threshold increases further 

in a range of 0.5 to 0.75. When considering the precision and 

recall figures, precision increases rapidly and reaches its 

maximum, while recall decreases rapidly. Ultimately, recall 
ended up with a very low figure (0.16) when threshold value 

further increased. The recall figures rapidly reduced due to 

the sudden decrease in true positives and sudden increase in 

false negatives. Precision values also show a rapid increase 

due to the fact of rapid reduction in false positive values. F-

measure figures also rapidly decrease when the threshold 

increases. This behaviour was due to the rapid reduction of 

recall and precision figures. Thus, we can be satisfied with 

the results obtained in terms of accuracy and precision, but 

not with the recall and F-measure figures. 

    When analysing the results obtained from resulting matrix 
(refer Table III C), the accuracy has a direct proportional 

relationship with the threshold value. Recall was decreased 

and precision increased when the threshold value gets 

increased. Even though the recall figures get decreased, the 

figures, which were still higher, were being compared to 

precision values. The reason for such behaviour was due to 

the fact of sudden increment of false negatives when the 

threshold gets increased. The decrement of the false positives 

was the reason behind the increment of precision figures. F-

measure figures were increased from 23.74 to 36.98 when the 

threshold get increased in a range of 0.25 to 0.75 because of 

corresponding precision and recall figures. 

B.  ROC Curves 

    As shown in the ROC curve (refer Fig. 3 - Blue colour 

curve), it covers AUC of 0.9030. It’s a massive AUC while 

taking entire portion into the action, because there was only 

0.097 (1.00 – 0.9030) area yet to be covered. 

   With respect to the ROC curve for P-score matrix (refer Fig. 

5 - Green colour curve), it has the lowest AUC of 0.7708. 

Also, this ROC curve does not seem to be smooth like other 

TABLE IIIII 

EVALUATION MEASUREMENTS FOR ALL MATRICES – APPROACH 02 

Without Force to Preserve Existing DDIs 

A) Target Similarity Matrix 

Evaluation 

Measurements % 
T = 0.25 T = 0.50 T = 0.75 

Accuracy 82.73 90.57 94.99 

Precision 13.45 20.20 29.37 

Recall 89.18 74.37 49.56 

F-Measure 23.38 31.77 36.88 

B) P-Score Matrix 

Accuracy 96.77 97.25 97.05 

Precision 44.48 99.23 100.00 

Recall 37.65 7.05 0.16 

F-Measure 40.78 13.16 0.33 

C) Resulting Matrix 

Accuracy 82.34 90.59 94.99 

Precision 13.61 20.38 29.44 

Recall 93.06 75.19 49.73 

F-Measure 23.74 32.07 36.98 

 

ROC curves. The reason for such behaviour was that it does 

not have an intermediate false positive rate coordinate in the 

range of 0.2079 to 1.00. Also, it does not have a true 
intermediate positive rate coordinate in the range of 0.6656 to 

1.00 for the selected threshold values. This ROC was still 

acceptable, because still it is above the diagonal line and 

0.2292 (1.00 – 0.7708) of AUC is yet to be covered.  

    The ROC curve which has plotted for resulting matrix 

(refer Fig. 5 - Red colour curve), gives AUC of 0.9215 which 

is almost closer to the one (0.0785 of AOC is yet to be 

covered). It’s a good indication that this model gives more 

accurate results. 

     When comparing the ROC figures obtained for each 

matrix type: target similarity, P-score and resulting matrices 

gives AUC figures as 0.9030, 0.7708 and 0.9215 respectively. 
The P-score matrix has the lowest AUC among the available 

three types of matrices. The resulting matrix gives the best 

results in terms of AUC. Thus, the integration of target 

similarity matrix and the P-score matrix give more accurate 

results rather than considering them individually in this 

approach. Therefore, it is a good indication that the 

combination of more similar DDIs knowledge can be used to 

improve the accuracy of prediction results in the approach of 

without force to preserve existing DDIs. 

 

Compare the Results Obtained through Approaches. 
This section compares the results given by the mentioned two 

fundamental approaches used in this study: Force to preserve 

existing DDIs and without force to preserve existing DDIs. 

For each of these two approaches, we have discussed the 

effect of using three techniques: target similarity matrix, P-

score matrix and resulting matrix using evaluation 

measurement matrices and ROC curves. 

 

 



9                                                                                                                                    S. D. L Gunawardena#1, A. R. Weerasinghe#2, M. W. A. C. R. Wijesinghe#3

   

July 2018                                                                                                                                      International Journal on Advances in ICT for Emerging Regions  

 

Fig. 5 ROC Curves for all matrices - Approach 02 

 

A. Evaluation Measurement Matrices 
 

According to the summarization of both approaches (refer 

Table II & III), the Forced to preserve existing approach 

performs better compared to the results which was given by 

the target similarity matrix in terms of accuracy, precision, 

recall and F-measure. In terms of accuracy, the approach 01 

does not have a considerable amount of improvement, But 

when it comes to precision and recall approach 01 performs 

better especially when the threshold values were high. 

When considering about the evaluation measurements 

given by P-score matrices for both approaches, ‘Force to 
preserve existing DDIs’ approach preforms better compared 

to ‘Without force to preserve approach’ for all the evaluation 

measurements except the precision. There is no higher 

variation between accuracy figures, but there is a 

considerable amount of variation when it comes to recall and 

F-measure figures especially when the threshold values are 

higher. In terms of precision values, approach 02 gives better 

results compared to approach 01 when the threshold value 

gets increased. 

    According to the results obtained through resulting matrix, 

‘Forced to preserve existing DDIs’ approach preforms better 

for accuracy, precision, recall and F-measure compared to 
‘Without force to preserve existing DDIs’ approach. Thus, in 

overall performance, approach 01 is better compared to 

second approach with respect to the results given by 

evaluation measurement matrices. 

 

B. ROC Curves 
 

When comparing the results given by ‘Force to preserve 

existing DDIs’ approach, the ROC curve drawn for P-score 
covers more area, where target similarity and resulting 

matrices cover almost similar amount of area (refer Fig. 4). 

When considering the exact AUC figures for ‘Force to 

preserve existing DDIs’ approach (refer Table IV), it 

indicates that the target similarity matrix has an AUC of 

0.9792, P-score matrix has an AUC of 0.9918 and resulting 

matrix has an AUC of 0.9791. Thus, for the approach 01 P-

score matrix technique performs better. 

    When comparing the results given by ‘Without force to 

preserve existing DDIs’ approach, it gives higher AUC for 

the resulting matrix (refer Fig. 5) compared to target 

similarity and P-score matrix results. When considering the 

exact AUC figures for ‘Without force to preserve existing 

DDIs’ approach (refer Table IV), it indicates that the target 

similarity matrix has an AUC of 0.9030, P-score matrix has 

AUC of 0.7708 and resulting matrix has AUC of 0.9215. 

This implies that the combination of multiple results tends to 

give better results with the ‘Without force to preserve 
existing DDIs’ approach. Thus, the combination of multiple 

techniques gives more accurate results according to this 

approach. 

 
TABLE IVV 

AUC FIGURES FOR APPROACH 1 AND APPROACH 2 

 
 Matrix Type 

Target 

Similarity 

Matrix 

P-score 

Matrix 

Resulting 

Matrix 

AUC 
Approach 1 0.9792 0.9918 0.9791 

Approach 2 0.9030 0.7708 0.9215 

 

V. DISCUSSION 

Different types of models have been published recently for 

predicting DDIs. These models are mainly based on two 

fundamental techniques named: knowledge based and 

similarity based. Often knowledge based approaches are 

focused on the post market stage. The similarity based 

approaches are focused on the pre-market stage and the initial 

part of the post-market stage is in the drug development 

process. However, both techniques suffer from several 

limitations such as the necessity to distinguish drug classes 

and inability to handle novel drugs for which limited reports 

exist [12]. 
We propose a large-scale method based on identifying 

target and side effect similarity to predict multiple types of 

DDIs. The model described in this article can exploit 

experimental knowledge to identify the possible causes for an 

interaction. The proposed model potentiates a visible pattern 

in the DrugBank database (similar drugs have similar 

interactions) by detecting drugs similar to the drugs 

implicated in the interactions described previously. Therefore, 

one limitation of this study is that the performance of the 

model depends on the comprehensiveness of the information 

in the original interaction database. 
The proposed model only determines whether a given pair 

of drug is going to interact or not. It will determine the 

category of an interaction (whether the resulted interaction is 

harmful or harmless). Also, the proposed model does not 

consider the method of administration of a drug (e.g., Taken 

orally, injected or applied externally, such as an ointment or 

ophthalmic drops). According to the biology, the outcome 

can be varied depending on the method of administration. 

The effect changes due to the dose changes were not 

addressed in this research. Thus, such kind of facts can be 

further addressed as a future work of this study. 

Although the similarity model provides valuable 
information associated with the initial interactions, a more 

reliable and complex system could be implemented through 

the integration of: structural similarity measures and 

knowledge in pharmacological databases containing 
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information about possible molecular structural similarity [6] 

and interaction profile fingerprints (IPFs) [5]. The proposed 

method could also be combined with other methodologies 

using different types of information, such as the Food and 

Drug Administration’s Adverse Event Reporting System 

[2][11][13], which was created to provide post-marketing 

drug safety information, or the use of clinical data in 

electronic health records [4].  
Several DDIs highlighted in our methodology was not 

recognized in the earlier stage and consequently it has 

considered as false positives in our evaluation. However, 

there is a possibility that some of these drugs do interact with 

each other, but not yet been identified. Therefore, it is 

possible to have a lower false positive rate than estimated. 

VI. CONCLUSION 

The results presented in this study demonstrate the usefulness 

of the proposed network based on drug-drug interaction 

methodology as a promising approach. The method described 

in this article is very simple, efficient, but biologically sound. 

This study addresses the problem of predicting novel DDIs 
using two different approaches. Under each of these 

approaches, we have analyzed the results using three different 

matrices. When concluding the prediction results, ‘Force to 

preserve existing DDIs’ approach performs better compared 

to ‘Without force to preserving’ approach. However, there 

were 3 700 experimentally discovered DDIs in the DrugBank 

database 2011 snapshot and in 2014 amount has been reduced 

up to 3 660. Thus, there is a reduction of forty interactions 

(3700 − 3660) along with the time. This does not indicate the 

fact that there were no new interactions discovered within 

those three years. It is an indication that there is a probability 
where the previously interact drug pairs were removed from 

the interaction drug pair list (ex: - let’s assume that 10 new 

interactions were discovered within the time period and 14 of 

previously known interactions were not going to consider as a 

successful interaction. Furthermore, in such cases, the 

ultimate output looks as there is a reduction of DDIs). 

    In all approaches that we have considered, the accuracy 

gets increased along with the threshold value which means 

that there is a higher possibility of generating better 

prediction results when a higher threshold value was input to 

the proposed model. When considering about the obtained 
results through ‘Without force to preserving existing DDIs’, 

resulting matrix gives highest AUC, when compared to target 

similarity and P-score matrices (refer Fig. 3). In terms of 

exact figures, resulting matrix gives an AUC of 0.9215, but 

target similarity matrix and P-score matrix gives an AUC of 

0.9030 and 0.7708 respectively. It shows that the integration 

of different similarity measures tends to give more accurate 

results rather than using them individually when it comes to 

without force to preserve existing (known) DDIs approach. 
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