
International Journal on Advances in ICT for Emerging Regions 2021 14(2): 

March 2021                                                            International Journal on Advances in ICT for Emerging Regions 

Cluster Identification in Metagenomics – A Novel 
Technique of Dimensionality Reduction through 

Autoencoders 
Kalana Wijegunarathna#1*,Uditha Maduranga2*, Sadeep Weerasinghe3*, Indika Perera4*, and Anuradha Wickaramarachchi5 Ϯ 

 
Abstract— Analysis of metagenomic data is not only challenging 
because they are acquired from a sample in their natural 
habitats but also because of the high volume and high 
dimensionality. The fact that no prior lab based cultivation is 
carried out in metagenomics makes the inference on the 
presence of numerous microorganisms all the more challenging, 
accentuating the need for an informative visualization of this 
data. In a successful visualization, the congruent reads of the 
sequences should appear in clusters depending on the diversity 
and taxonomy of the microorganisms in the sequenced sample. 
The metagenomic data represented by their oligonucleotide 
frequency vectors is inherently high dimensional and therefore 
impossible to visualize as is. This raises the need for a 
dimensionality reduction technique to convert these higher 
dimensional sequence data into lower dimensional data for 
visualization purposes. In this process, preservation of the 
genomic characteristics must be given highest priority. 
Currently, for dimensionality reduction purposes in 
metagenomics, Principal Component Analysis (PCA) which is a 
linear technique and t-distributed Stochastic Neighbor 
Embedding (t-SNE), a non-linear technique, are widely used. 
Albeit their wide use, these techniques are not exceptionally 
suited to the domain of metagenomics with certain shortcomings 
and weaknesses. Our research explores the possibility of using 
autoencoders, a deep learning technique, that has the potential 
to overcome the prevailing impediments of the existing 
dimensionality reduction techniques eventually leading to richer 
visualizations. 
 
Keywords— Metagenomic data visualizations, nonlinear 
dimensionality reduction, autoencoders, clustering  

I. INTRODUCTION  
he field of metagenomics has shown popular interest 
among bioinformatics and computer science researchers 

in the recent years. It has opened up new pathways in many 
areas including population-level genomic diversity of the 
microbial organisms. Metagenomics [1] was coined, with the 
idea of performing analysis on similar in certain criteria, yet 
non identical, microorganisms which are extracted from 
diverse environmental samples or from the natural habitats in 
order to study the structure and functions of microorganisms. 
An earliest-known method for studying metagenomic DNA is 
the abundance of guanine-cytosine (%GC) content. 

%GC varying widely between species but remaining 
relatively constant within the species is proven. Acquiring 
oligonucleotide frequencies of the microbial organisms is a 
widely used method that identifies the nucleotide 
composition with much better accuracy and effectiveness, 
compared to %GC [2]. Contemporary studies have shown 
that the oligonucleotide frequencies as they appear in 
genomic sequences is unique for a given microorganism. 
Research on this which runs back to 1960s, showcase the fact 
that oligonucleotide frequencies having species-specific 
signatures [3]. Because of this, an array of all oligonucleotide 
frequencies for a given length provides genomic signatures 
for microorganisms. 

Oligonucleotide frequencies can be represented as vectors 
in high dimensional Euclidean space. Visualization of 
metagenomic data, without prior taxonomic references using 
sequence fragments can use frequency vectors to be used as 
genomic signatures. An ideal visualization must be capable of 
capturing the authentic characteristics of the microorganisms 
in the sample, given a set of metagenomic sequence 
fragments, and display the alike species separated from the 
rest. Consequently, the visuals must be capable to display the 
taxonomic structure which is inherited by the original 
sequence data. Being self-explanatory and ability to carry out 
further analysis are few of the other characteristics that are 
expected of visualizations. 

Visualization of metagenomic data is broadly twofold. The 
visualization of a single metagenome and the visualization of 
multiple metagenomes. While visualization of multiple 
metagenomes gives insight into the nature of the same or 
different types of species found in the two different 
environments and helps researchers gain insightful 
information on the environments, the study of single 
metagenomes focuses on the species richness and diversity in 
the particular environmental sample. Despite the high 
dimensionality and other challenges, metagenomic data can 
be visualized in various techniques as described by Sudarikov 
et al [4]. 

Conversely, taxonomic classification of metagenomic data 
can be broadly categorized into four categories. Sequence 
similarity based classification employs a database search on a 
database of reference sequences. This method has been 
successfully used in the identification of reads of length as 
short as 80 base pairs where most other methods have failed 
[5]. This method is usually slower and uses Basic Local 
Alignment Search Tool (BLAST) [6] to identify similarities. 
Classification based on sequence composition is another 
method of taxonomic classification. One way of doing this is 
by using nucleotide composition of the reads. The nucleotide 
composition of the reads are compared with the models built 
using the composition of reference genomes and the model 
that fits the composition of the reads best are chosen. The 
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main drawback of this method is that it fails to classify reads 
shorter than 1000 base pairs with reasonable accuracy [7]. 
The third classification method is a hybrid of the two 
previous methods that combines both approaches of read 
similarity and nucleotide composition. It is possible to 
increase the accuracy by taking an aggregation of the two 
matches for a better result. In this case the score from the 
read-sequence similarity and the score from the read 
composition and reference genome model are combined. 
Alternatively, it is possible to narrow down the database 
using composition matching as the initial step to apply the 
similarity search on the filtered, reduced database [8]. The 
last of the four approaches is the use of marker genes. The 
reads are classified according to the markers they hit. 
Although this method is faster and efficient, it induces a bias 
towards organisms with larger genomes since they generate a 
larger number of reads [7]. Due to variability in 16S rRNA 
(ribosomal Ribonucleic Acid) [9] copy number, Amplicon 
sequencing [10] also suffers with bias. 

A key challenge in bioinformatics as well as 
metagenomics to date is the visualization of metagenomic 
fragment data without prior taxonomic identification. Usually 
for the visualization needs, the higher dimensional frequency 
vectors need to be embedded into lower dimensions (2D or 
3D). Preservation of the inherited data from the genomic 
sequences is a deciding factor of the quality and accuracy of 
the visualizations when reducing into lower dimensions. 
Principal Component Analysis (PCA) [11] and t-distributed 
Stochastic Neighbor Embedding (t-SNE) [12] are two of the 
most widely used techniques for this purpose. But limitations 
in these techniques which hinder faithful visualizations 
prevail. 

Massive volumes of genomic data can be produced in such 
an efficient manner using the advancements in the field of 
sequencing and with the introduction of latest sequencing 
technologies like Next-Generation Sequencing (NGS). It is 
evident that with the availability of large volumes of genomic 
data, optimizations and new analyzing techniques are 
becoming more crucial. Cutting-edge technologies that are 
being used throughout in computer science can be adopted in 
the field of bioinformatics as well. Deep learning techniques 
are built to handle the rapid rate of generation of data and for 
the intuitive and rapid analysis. 

This research aimed at producing better visualizations in 
metagenomics for cluster identification by adopting an 
autoencoder based approach of dimensionality reduction. 
Autoencoders can be used in this context to convert higher 
dimensional metagenomic data into visualizable lower-
dimensional data preserving the important characteristics of 
the original sequences. Since it is a deep learning technique it 
will be useful in a context like genomics. This allows better 
analysis on data-inherent taxonomic structure, free from 
alignments. 

The rest of the paper is organized as follows. The related 
work on dimensionality reduction techniques and research 
that are carried out on using autoencoders in the genomics 
domain are discussed under Section 2. A broader introduction 
to autoencoders is given in Section 3. Dataset, methodology 
for dimensionality reduction and visualizations are discussed 
in Section 4 followed by the experimental results which are 
described and demonstrated in Section 5 in detail. Finally, 
Section 6 concludes the paper giving an overview of the 
future work. 

II. RELATED WORK 

A. Dimensionality Reduction Techniques 
Representing data visually can be considered as a major 

challenge in the field of genomics. Processes such as 
transforming, scaling, normalizing, color-encoding and 
clustering play major roles in visualizing genomic data. It is 
important not to hinder users’ ability to interpret data while 
facilitating the users to carry out their analysis more 
conveniently and precisely. According to the studies done by 
Rall et al.  [13], still number of challenges prevail in 
visualizing the genomic data. One of the leading challenges 
will be dealing with the dimensionality of the genomic 
sequence data. A plethora of research were carried out on 
lower-dimensional embedding techniques. 

One of the dominant concerns is dimensionality reduction, 
in bioinformatics fields, which looks into analyzing sequence 
data. Genomic sequence data consists of extensive amounts 
of sequence data and features. Thus, it is essential to reduce 
the dimensionality of data to extract useful analysis and 
visualization by avoiding the curse of dimensionality. 
Transformation of high dimensional data to a lower number 
of dimensions is a major goal in dimensionality reduction, 
providing simple interpretations. In the ideal case, 
dimensionality of reduced representation must have the 
dimensionality that corresponds to the intrinsic data [14]. One 
of the related concerns is the dense preservation of 
information. 

PCA, without a doubt, is the most commonly used linear 
technique in dimensionality reduction across multiple 
domains. It converts data in the higher dimension spaces to 
the lower-dimensional subspace making sure maximized 
variance in the projected data. Making sure that the 
maximum variance in the projected data also means PCA 
minimizes the squared reconstruction error. One of the 
leading drawbacks of PCA is its restriction with respect to 
linear transformations. Hauskrecht et al. [15] in in their work 
also displays the restrictions of PCA to guarantee high-
quality features for discriminatory purposes because it is a 
totally unsupervised technique. 

Stochastic Neighbor Embedding (SNE) [16] introduced by 
Hinton and Roweis is a non-linear technique to get lower 
dimensional representations. It uses a Gaussian distribution 
on each point of data in the higher dimension and defines a 
probability distribution for its neighbors. This unsupervised 
dimensionality reduction technique has been commonly used 
over many years. t-SNE [12] is a variant of the SNE for non-
linear dimensionality reduction. This method is also used to 
produce lower dimensional representations of higher 
dimensions that can be visualized with ease, especially in 
scatterplots. t-SNE preserves the global structures of the data 
like clusters while capturing the local structure of the higher 
dimensions. t-SNE adopts a Gaussian kernel in order to 
identify the similarities between points in the higher 
dimensions. Lower dimensional points are plotted while 
providing similar probabilities to the points and they are 
usually configured in such a way that they will reduce the 
divergence between the two distributions. Importantly, t-SNE 
strongly advocates against using Gaussians to measure 
distances in lower dimensions. It will instead opt for the one-
dimensional t distribution (i.e. the Cauchy Distribution). Thus, 
it has heavier tails and allows for more spread in the lower 
dimensional representation than Gaussian. Nevertheless, a 
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significant limitation of SNE as well as t-SNE is that their 
computational and memory complexity scale quadratically in 
the number of data objects N. Thus, SNE and its variants can 
only be used with limited number of points [17]. 

The standard implementation of t-SNE has a time 
complexity of O(N2), where N is the number of genomic 
fragments. Barnes-Hut-SNE (BH-SNE) introduced by 
Laurens van der Maaten [17] has a time complexity of O(N 
log N). Therefore, BH-SNE is significantly faster compared 
to t-SNE. Despite the efficiency, the results produced by BH-
SNE are similar to that of t-SNE. Sparse similarities between 
each pair of points were obtained using vantage-point trees 
while the forces of the corresponding embedding were 
acquired using an enhanced version of Barns-Hut algorithm 
[18]. Due to the lower time complexity, BH-SNE can process 
more than a million data points within a reasonable time. 

A 2009 paper [19] by Dick et al describes the use of Self-
Organizing Maps [13] (SOMs) for reducing the 
dimensionality of tetranucleotide genomic signatures 
belonging to two acidophilic biofilm communities. The 
unsupervised learning technique SOM uses an artificial 
neural network to generate a two-dimensional representation 
of the high dimensional data. This technique was used by the 
researchers to bin tetranucleotide sequence fragments 
obtained from isolated genomes and metagenomic samples. 
Despite being neural networks based, SOM does not rely on 
error-correction learning. Instead, SOM depends on 
competitive learning to map the inputs to an output while 
preserving characteristics in the input space. 

Gisbrecht et al. [21], in their research on “Nonlinear 
dimensionality reduction for cluster identification in 
metagenomic samples” has compared several currently used 
techniques for dimensionality reduction. The researchers 
have obtained oligonucleotide frequency vectors from a set of 
sequences generated by simulating metagenomic next-
generation sequencing. These vectors have then been fed into 
dimensionality reduction algorithms. Researchers have used 
the effectiveness of these algorithms at clustering the output 
to compare the dimensionality reduction techniques. The 
techniques being compared are PCA, GTM (Generative 
Topographic Mapping) [22] and t-SNE. The research 
demonstrates that t-SNE outperforms the other techniques in 
terms of accuracy. The researchers have also introduced 
improvements to t-SNE to overcome its high complexity. 

Datasets in bioinformatics are typically large. The 
quadratic time complexity of t-SNE does not scale well for 
the needs of the genomic datasets. This is a shortcoming that 
needs to be addressed. The use of autoencoders for this 
purpose has been explored by Wang and Gu in their paper on 
dimension reduction and visualization of single-cell RNA seq 
data [23]. 

B. Autoencoders in Genomics 
As deep learning became mainstream, we have observed a 

rise of neural network based techniques that rival the 
traditional mathematical & probabilistic methods in their 
corresponding areas. In the case of dimensionality reduction, 
autoencoders can be named as the candidate, deep learning 
has to offer. The viability of autoencoders to replace t-SNE, 
and PCA in the context of bioinformatics has to be explored. 
Autoencoders, however, have already played a role in the 
bioinformatics domain in several instances. 

A 2019 paper by Ersalan et al. [24] describes how they 
managed to denoise single-cell RNA sequencing (scRNA-seq) 
datasets  using deep count autoencoders (DCA). They used  
an enhanced version of autoencoders although a number of 
other methods existed to perform this very task. The 
enhancement was in terms of the specialized loss functions 
which drive in the direction of denoised scRNA-seq data. In 
addition to that, DCA scales linearly with regard to the 
number of cells overcoming the limitation of limiting the 
datasets. Experiment results suggest that DCA has surpassed 
the existing methods for imputation by means of quality and 
speed. 

Wang et al. [23] in the research on dimension reduction of 
single-cell RNA seq data, propose the use of variational 
autoencoders. Research experimented the use of variational 
autoencoders for single-cell RNA seq data because the 
chances of dropouts are higher when dealing with single-cell 
levels with higher transcriptional fluctuations. This 
experiment went on to show how to overcome the limitations 
of PCA and ZIFA (Zero Inflated Factor Analysis) [25] by 
testing on over 20 different datasets. Variational 
autoencoders gain a special edge over both PCA and ZIFA 
because of its ability to deal with complex non-linear 
relationships. 

Wang and Wang [26] in their research have used 
variational autoencoders to study two subtypes of lung 
cancers, lung adenocarcinoma (LUAD) and lung squamous 
cell carcinoma (LUSC). Although the researchers were 
expected to capture underlying DNA methylation patterns of 
the different original subtypes separately, some LUSC 
samples were classified into a LUAD group, which may be 
an indication that some parts of LUSC tumor samples may 
have similar DNA methylation expression compared to 
LUAD tumor. It was evident that a biologically meaningful 
latent space can be extracted using variational autoencoders 
from the data consisting of two or more subtypes of the lung 
cancers. 

III. AUTOENCODERS 
Although autoencoders took the center stage in the late 

2000s with the introduction of the deep architecture, the 
original concept goes back as far as 1980s when Rumelhart et 
al. [27] introduced a new learning procedure that recurrently 
adjusts the weights of the connections of the network in such 
a way that the disparity between the actual output and the 
expected output of the network is minimal. Autoencoders can 
be considered as a special type of neural networks, which 
consists of two symmetric components namely encoder and 
decoder. Encoder maps input to more compressed lower 
dimensions, in contrast to the decoder which does exactly the 
opposite. Autoencoders are an unsupervised learning 
technique that leverages reducing the dimensionality of the 
input vectors efficiently, such that it will preserve the 
important characteristics of the original data and then 
reconstructing the original data with minimum loss using 
compressed representation. L(x, x’), which represents the 
deviation between the original input (x) and the consequent 
reconstruction (x’) should be diminished to get better 
reconstructions. 
A general autoencoder (Fig.  1) can be expressed using the 
tuple X, Y, Φ, Ψ, X’ where Φ denotes the encoder function 
and Ψ represents the decoder function of the autoencoder. X 



Cluster Identification in Metagenomics – A Novel Technique of Dimensionality Reduction through Autoencoders  4 

International Journal on Advances in ICT for Emerging Regions                                                                                                                                    March 2021 

and X’ are the input and the output vectors of the autoencoder 
respectively. 

 

 
Fig. 1  Structure of a general autoencoder 

 

 Φ : Χ → Υ (1) 

 Ψ : Υ → Χ (2) 

 Φ, Ψ =  . argΦ,Ψ  min (loss(x,x’)) (3) 

Φ denotes the function that maps the original data X, to a 
latent space Y, which appears at the bottleneck and Ψ 
function does the opposite. Deep autoencoders can have 
multiple hidden layers. 

Basically, when the layers of the neural network increased, 
those autoencoders are called deep autoencoders. Having 
advanced learnability will be essential to reconstruct the input 
data as it is if possible. A well trained autoencoder is capable 
of reconstructing the input with minimum loss. Although the 
reconstruction is done by the decoder, saving important 
characteristics of the input data plays a major role up to the 
bottle-neck layer of the autoencoder. 

Autoencoders can be considered as the non-linear 
generalization of PCA that converts higher dimensional data 
into lower dimensional code using the encoder part [28]. 
Autoencoders are being used as a powerful tool for 
dimensionality reduction [29]. It is proven to be useful in 
fields which have extensive amounts of data to work with. 

IV. METHODOLOGY 

A. Dataset 
For the experiment, we chose a subset of the genomic 

sequences used by Gisbrecht et al [21] as our dataset. The 
sequences were obtained from the  NCBI (National Center 
for Biotechnology Information) microbial genomes database 
(https://ftp.ncbi.nlm.nih.gov/genomes/refseq/bacteria/). We 
first went on to reproduce the PCA, and t-SNE based results 
to work as the baseline for the research. To conduct the 
research the genomic sequences were downloaded in the 
FASTA file format. Complete genomes of 8 microbial 
species were used. Our chosen subset contained species that 
are taxonomically very close to each other, as well as species 
that are very different from each other. The intention was to 
explore how well the dimensional reduction process 
preserves the taxonomic similarities and dissimilarities. 

B. Implementation 
The DNA sequences that we obtained, must go through a 

multi-stage process before they are ready to be visualized. 
This does not mean that significant alterations are done to the 

underlying genomic features of the sequences. Two- or three-
dimensional scatter plots are drawn based on the input 
sequences at the end of the following process. 

• Processing raw microbial DNA sequences and 
extracting genomic metrics 

• Converting the higher dimensional genomic metrics 
into a lower dimensional state 

• Visualizing the lower dimensional state with scatter 
plots 

First, we read contiguous blocks from each input DNA 
sequence. The blocks were taken from random locations 
within the sequence. The lengths of the sequences were 
chosen so that they form a normal distribution where the 
mean length is 5000 base pairs, and the standard deviation is 
1000 base pairs. For a given k value, we calculated the 
number of the occurrences of each k-mer within each block. 
A k-mer and its reverse complement pairs were considered as 
a single k-mer; therefore, we had to take the sum of the 
occurrences of each k-mer in the pair and use that to 
represent that k-mer and its reverse complement. This method 
was proposed by Abe et al. [30]. For each block, we created a 
vector by taking all such k-mer frequencies. The resulting 
vector was then normalized. 

After following the above process, what we end up with is 
a set of vectors, each having an equal dimensionality. The 
dimensionality depends on k. The high dimensionality of 
these vectors makes them impossible to visualize as they are. 
Transforming these high dimensional vectors to a lower 
dimensionality is done by the autoencoder. The output of the 
autoencoder is a set of lower dimensional vectors, typically 
the dimensionality of these vectors is less than 4. These 
vectors are then directly used for visualization by drawing 
scatter plots. Other techniques can also be used in the place 
of the autoencoder for the process of dimensionality 
reduction. 

The autoencoders perform dimensionality reduction in 2 
stages. In the first stage, we feed the high dimensional 
vectors to train the autoencoder. In this stage the input layer 
of the neural network is provided with the vectors, and the 
same vectors are expected from the output layer of the neural 
network. In other words, we train the neural network to 
produce the same vector as the input. Each of the vectors fed 
into the autoencoder corresponds to each block we read 
originally. Once the training is over, we send the same set of 
vectors as input and obtain the values produced in the 
bottleneck layer. The resulting values correspond to a lower 
dimensional representation of the input vector. 

We experimented using various neuron counts for each 
layer and analyzed the results. As we identified the following 
configurations worked the best for respectively 3-mers and 4-
mers, 

1. {32, 16, 2, 16, 32} 
2. {136, 64, 2, 64, 136}  

The results we obtained using these autoencoders are 
presented in the paper. We used sigmoid as the activation 
function for neurons, while ‘Adam’ and mean square error 
were used as the optimizer and the loss function respectively.  
1000 reads (blocks) were taken from each of the original 
genomes, each on average having a length of 5000 bp. 

For comparison purposes, the results of PCA and t-SNE 
obtained using the same data fed to the autoencoder were 
visualized. The sequence lengths and standard deviation were 
kept constant across all three approaches. T-SNE and PCA 

https://ftp.ncbi.nlm.nih.gov/genomes/refseq/bacteria/


5  K. Wijegunarathna#1*, U. Maduranga2*, S. Weerasinghe3*, I. Perera4*, A Wickaramarachchi5Ϯ 

March 2021                                                                                                                                   International Journal on Advances in ICT for Emerging Regions  

were both imported from the ‘scikit-learn’ [31] library. 
Seaborn data visualization library was used to visualize the 
data in its reduced 2D space. The availability of ground truth 
labels ensured comparability of the performances of the three 
techniques of dimensionality reduction using the clusters 
produced by the respective approaches. 

Due to the use of a manually curated simulated 
metagenomic dataset, the ground truth label, i.e., the true 
identity of the microorganism to which the oligonucleotide 
frequency belonged to, is known. But this is rarely the case in 
the field of metagenomics, where a single metagenomic 
sample obtained from the environment may consist of large 
amounts of DNA fragments from a wide variety of species 
who may or may not be related to each other. Hence making 
the evaluation of latent space visualizations of real 
metagenomic datasets extremely challenging. Though this 
can be broadly named a clustering problem, several acute 
complications remain. While the creation of an isolated, 
lonely clusters consisting of data points from the right species 
is useful in the context of identifying the number of 
organisms in the sample, this sort of isolation can be costly in 
terms of taxonomic information. Not only is the creation of a 
cluster consisting of the same species important but the whole 
visualization must reflect the connections and similarities 
these different clusters bear with each other. Hence, mere 
arbitrary separation is not recommended. 

In our experiment, we used DBSCAN (Density-based 
spatial clustering of applications with noise) DBSCAN [32] 
for clustering. Though ideal method for clustering low 
dimensional metagenomic data is still a point of debate in the 
research community, DBSCAN is a powerful algorithm that 
discovers clusters of arbitrary shapes and can efficiently deal 
with large datasets that are part and parcel of genomic 
problems. DBSCAN relies on a density-based notion of 
clusters and requires only one essential input parameter. The 
low dimensional (2D) coordinate pairs, obtained from the 
bottleneck layer of the autoencoder, of the oligonucleotide 
frequencies are then fed to the DBSCAN for clustering. 
These 2D coordinate pairs are then clustered by DBSCAN 
without knowledge of their ground truth labels into clusters 
solely based on their distances in the 2D coordinate plane. It 
is these clusters that are produced by DBSCAN that need 
evaluation. Clustering evaluation can be broadly categorized 
into two; intrinsic metrics and extrinsic metrics [33]. 
Extrinsic metrics, when calculating the quality of a cluster, 
considers the ground truth label of the data points in each of 
the clusters. Therefore, the use of an extrinsic metric 
demands ground truth labels, which we fortunately possess. 
Contrary to extrinsic metrics, intrinsic metrics only consider 
the intra-cluster closeness and inter-cluster distance, not 
taking into consideration the ground truth labels of the data. 
Intrinsic clustering evaluations evaluate the integrity of the 
clusters formed in the low dimension that meets the user’s 
eyes. 

The primitive logic that is used in the density-based 
clustering approach is derived from a human-intuitive 
clustering method. In DBSCAN the resultant clusters are the 
dense regions in the given dataset, separated by regions of the 
lower density of points. The ability to identify arbitrary 
shaped clusters and robustness towards the outliers make 
DBSCAN more effective with the datasets that have 
relatively similar densities in the clusters. This algorithm is 
based on connecting data points within certain distance 

thresholds. For any given set of data points, DBSCAN 
separates data points into three categories. 

• Hub points - Points that are at the interior of a cluster 
(Centre). 

• Edge points - Points that fall within the neighborhood 
of a hub point that is not a hub point. 

• Noise points - Any point that is not a hub point or an 
edge point. 

The most important factor to consider when using 
DBSCAN is getting appropriate values for the parameters of 
the algorithm. Although there are a few parameters that can 
be tuned, the eps parameter, and the min_points 
(min_samples) are crucial. Among those two, min_points is 
used to identify a dense region in the dataset by considering 
the number of neighboring points required for a point to be 
considered as a dense region. 

The quality of clusters created by DBSCAN is governed 
by DBSCAN’s vital input parameter, epsilon. Epsilon is the 
threshold for the maximum distance between two data points, 
above which distance, the two points will no longer be 
neighbors. For a fair estimation of epsilon in each of the 
DBSCAN clustering, the “knee point” [34] of the plot 
between the 10 nearest neighbors in sorted order vs. the 
distance was calculated to find the optimal epsilon. Scikit-
learn’s NearestNeighbors and “kneed’s” KneeLocator was 
used for the calculations. To improve the visibility of the 
clusters, Convex Hull algorithm [35] was used to draw 
boundaries around them. 

V. RESULTS 
For a formal evaluation two metrics were employed in 

addition to direct visual inspection. Distinct autoencoders 
were used with distinct number of layers and neurons for 
trinucleotide and tetranucleotide data to obtain separate 
visualizations. Clustering was then applied to the reduced 
dimensionality data obtained through the three 
dimensionality reduction approaches. 

As was discussed earlier, a comprehensive evaluation of 
clustering must take into account an intrinsic measure as well 
as an extrinsic measure. There are important metrics which 
can be used to evaluate clustering. But most of these metrics 
alone will not make it an effective performance evaluation on 
clustering as they can be biased. In this experiment one 
intrinsic metric and one extrinsic metric will be used for the 
evaluations and comparisons. We chose V-measure and 
Silhouette coefficient to evaluate the performance of overall 
clustering with respect to all three techniques that will be 
analyzed. 

Validity Measure (V-measure) [36] based on two other 
metrics called Homogeneity and Completeness, is an entropy 
based extrinsic clustering evaluation metric. It evaluates the 
successful clustering of data points with respect to their 
ground truth labels. Homogeneity and completeness are 
inversely proportional, and a good clustering should maintain 
a balance between those two metrics. Homogeneity evaluates 
how many data points in each cluster are with the same label. 
Maximum homogeneity is obtained by a clustering that has 
clusters that only have data points of the relevant class. This 
in turn results in zero entropy. Assume a clustering with N  
number of total data samples, C different class labels and K 
clusters. Assume also that the number of data points from 
class c in cluster k is ac,k. 
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TABLE I 
CLUSTERING USING TRINUCLEOTIDES 

Data representation 
Trinucleotides 

V-measure Silhouette coefficient 

Autoencoder 
{32, 16, 2, 16, 32} 

0.901 0.564 

t-SNE 0.878 0.614 

PCA 0.745 0.485 

  (4) 

  (5) 

  (6) 

Completeness is a symmetrical metric to homogeneity. A 
clustering is complete when all the data points from the same 
class are clustered together in each cluster. In a clustering, 
completeness can be evaluated using the conditional entropy 
of the cluster distribution in comparison with the label given. 

  (7) 

  (8) 

  (9) 

V-measure, the metric that is used can be computed using 
weighted harmonic mean of homogeneity and completeness. 

  (10) 

The second evaluation metric, silhouette coefficient [37] is 
a measure of distance. It gives a measure on how close each 
data point in one cluster is to other data points in the 
neighboring clusters. Silhouette coefficient ranges between -1 
and 1. If the value of the coefficient is 0 that means the data 
point is on the inflection point of the two clusters. 

  (11) 

The tetranucleotide and trinucleotide reductions of 
autoencoders were separately compared and evaluated with 
the reductions of t-SNE and PCA. Autoencoder generated 
reductions colored with using the ground truth label can be 
seen in Fig. 2.  

TABLE III 
CLUSTERING USING TETRANUCLEOTIDES 

Data representation 
Tetranucleotides 

V-measure Silhouette coefficient 
Autoencoder 
{136, 64, 2, 64, 136} 
 

0.932 0.621 

t-SNE 0.886 0.654 

PCA 0.646 0.536 

 
As visible, there are clear clusters and separations. The same 
2D datapoints clustered using DBSCAN without taking their 
ground truth labels into consideration can be seen in Fig. 4. 
Worthy of notice is the close affinity of the two Clostridium 
bacteria, Clostridium phytofermentans and Clostridium 
beijerinckii.. As seen in Fig. 4., DBSCAN has managed to 
differentiate these two species to two different clusters but 
this is not always the case. In Fig. 3 and Fig. 5 with 
trinucleotide frequencies, the reduced dimensions do not 
distinctly classify the two Clostridium bacteria into two 
different clusters. But the close affinity of the two species on 
both occasions signals the preservation taxonomical 
information and relationships during dimensionality 
reduction when compared to t-SNE. 

In Comparison, t-SNE’s performance on the same 4-mer 
data can be found in Fig. 7 and Fig. 8. The distances between 
the clusters of the two Clostridium bacteria are arbitrary and 
conveys no information about the two species belonging to 
the same genus. Clostridium phytomenatas is in close affinity 
to all Microcytis, Mycobacterium, Erythrobacter and 
Rubrobacter as much as it is to Clostridium beijerinckii. 
Furthermore, DBSCAN seems to have identified separate 
clusters within the two Clostridium bacteria as well. PCA 
plots, Fig. 9 and Fig. 13 as seen to the naked eye and as also 
suggested by the evaluation metrics, are subpar. Well below 
the metrics for t-SNE and autoencoders. Note that a new 
optimized epsilon was calculated for each DBSCAN 
clustering, optimizing the algorithm to the data presented by 
each dimensionality reduction technique. Fig. 6. Gives the 
legend for plots colored using the ground truth labels. 

The autoencoder outperforms both t-SNE and PCA in all 
cases with regards to the V-measure. This improvement 
reflects the relatively lower loss of information compared to 
the ground truth labels. The formation of string-like shapes in 
t-SNE is another reason for the relatively lesser V-Measures 
of t-SNE compared to autoencoders. The breakage of these 
strings has more than once led DBSCAN to identify the data 
points of the same species as few different clusters. 

Silhouette coefficient, on the other hand, is highest in t-
SNE. Compared to the autoencoder t-SNE’s Silhouette 
coefficient is always slightly higher. This is due to the 
arbitrary yet clear separation of data points of different 
species. This arbitrary yet clear separation comes at a greater 
cost. The arbitrary distancing of the different clusters by t-
SNE has led to a loss in taxonomic relationships among 
species. On the contrary, autoencoder’s cluster distances are 
not arbitrary. The relative distances between clusters provide 
some useful insights into the taxonomic relationships in the 
real species the data points belong to. 
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Fig. 2  Dimensionality reduction of tetranucleotide frequencies using 
autoencoder {136, 64, 2, 64, 136}. Coloured according to known true labels 

 

Fig. 3  Dimensionality reduction of trinucleotide frequencies using 
autoencoder {32, 16, 2, 16, 32}. Coloured according to known true labels 

VI. CONCLUSION AND FUTURE WORK 
The results obtained from the research backed by the 

superior results obtained by autoencoders back the potential 
of using autoencoders in the field of metagenomics for 
dimensionality reduction and visualization of metagenomic 
reads. The systematically optimized DBSCAN clustering 
algorithm has always managed to identify a number of 
clusters that is quite close to the actual number of 
microorganisms present in the sample. This congruency of 
the lower dimensions with the information in the higher 
dimensions is reflected in the improved V-Measures. The 
significantly higher V-measure produced in comparison with 
the t-SNE and PCA dimensionality reductions prove 
Autoencoder’s ability to preserve the intrinsic dimensionality 
of data in the process of dimensionality reduction. Silhouette 
coefficient does not consider whether the points in the same 
cluster actually belong to a single cluster in the higher 
dimensions. The autoencoder remains in close contention 
with t-SNE on the silhouette coefficient which is an intrinsic 
measure of clustering that only considers the visual integrity 
of the data in the lower dimensions. 

Not only have autoencoders outperformed PCA and t-SNE 
on the metrics front but it has also managed to preserve 
taxonomic data by placing the species of the same genus in 

 
Fig. 4  DBSCAN cluster identification with convex hull for tetranucleotide 
frequencies in Fig. 2. Black dots show noise points. 

 
Fig. 5  DBSCAN cluster identification with convex hull for trinucleotide 
frequencies in Fig. 3. Black dots show noise points. 

relatively closer affinity. Taxonomic data preservation ability 
of autoencoders standout in contrast to t-SNE’s shortcoming 
of arbitrarily separating clusters giving no relevance to 
species’ relationships. Additionally, unlike t-SNE’s faltering 
quality with growing data volume, autoencoders, being a 
deep learning technique thrives with growing data volumes. 
These results demand a place for autoencoders in 
bioinformatics. Noisy reads can however plague the ultimate 
analysability and interpretability of visualizations. Noise can 
result in loss of important insights and false interpretations. 
The use of denoising autoencoders to denoise large volumes 
of sequence data is another potential avenue of research. 
Other forms of autoencoders like the denoising autoencoders 
and variational autoencoders are potential techniques that can 
be integrated to improve metagenomic analysis and further 
the use of deep learning in the wider domain of 
bioinformatics. 

 

 
Fig. 6  Legend for Fig. 2, Fig 3, Fig 7, Fig 8, Fig 9 and Fig 13. 
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Fig. 7  Dimensionality reduction of tetranucleotide frequencies using t-SNE . 
Coloured according to known true labels 

 

 

Fig. 8  Dimensionality reduction of trinucleotide frequencies using t-SNE. 
Coloured according to known true labels 

 

 

Fig. 9  Dimensionality reduction of tetranucleotide frequencies using PCA. 
Coloured according to known true labels 

 

 

Fig. 10  DBSCAN cluster identification with convex hull for tetranucleotide 
frequencies in Fig. 7. Black dots show noise points. 

 

 

Fig. 11  DBSCAN cluster identification with convex hull for trinucleotide 
frequencies in Fig. 8. Black dots show noise points. 

 

 

Fig. 12  DBSCAN cluster identification with convex hull for tetranucleotide 
frequencies in Fig. 9. Black dots show noise points. 
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Fig. 13  Dimensionality reduction of trinucleotide frequencies using PCA. 
Coloured according to known true labels 
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