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Abstract— Extensive presence of fog in outdoor images severely 
alters the scene appearance and hence reduces the visibility. 
Image processing based defogging algorithms are used to restore 
the details and colour in a single foggy image. Performances of 
the previous defogging approaches are considerably low since 
they fail to consider the image-specific cues. In this paper, a novel 
and simple defogging approach is proposed based on the 
estimation of depth map by considering the density of fog in local 
image regions. The proposed approach uses the scene-specific 
depth map information to compute the dark channel and 
transmission.  The quality of the recovered image is further 
improved by a post-processing technique. Experimental 
evaluation performed on FRIDA and FRIDA2 benchmark 
datasets demonstrates the proposed defogging framework 
outperforms state-of-the-art approaches. The results and code of 
this work are open-sourced for reproducibility 
(https://github.com/RPRO5/Defogging).  
 
Keywords— Defogging, Dark Channel Prior, Image 
Enhancement, Fog removal.  

I. INTRODUCTION  
oor visibility in outdoor images is one of the key challenge 
in many image understanding and computer vision-based 

applications such as traffic monitoring[1], automated 
driving[2], object detection[3], video surveillance[4], object 
tracking[5, 6] and aerial imagery[7]. Bad weather conditions, 
such as fog, haze, cloud and mist, can significantly reduce the 
visual quality of outdoor images. One of the major reasons for 
vehicle accidents is poor visibility due to the foggy scenes. The 
objective of the defogging frameworks is to increase the visual 
quality of foggy scenes by restoring the details and colour. 

Fog is produced by the extensive presence of water droplets 
in the air due to the bad weather conditions. These water 
droplets scatter the sunlight and light reflected from other 
objects. Due to the scattering, the contrast of an outdoor scene 
will be fade, and a whiteness effect will be produced towards 
the observer or camera. These two effects jointly produce a 
poor-quality image. It is observed that[8, 9] the amount of fog 
in an image mainly depends on the distance between the scene 
and camera. Therefore, estimating the depth map of a foggy 
image is important for restoring the fog-free image. 

Single image fog removal is a challenging task since fog is 
dependent on the unknown depth. Depth map prediction is a 

challenging problem if the input is only a single image. 
Therefore, many defogging approaches have used multiple 
images and additional information[10, 11] to recover the 
details.  However, without any prior information, single image 
fog removal in real-time is the demand of many real-world 
applications such as automated driving systems and vision-
based surveillance systems. 

Single image fog removal has attracted much research in the 
past[12-33] and following two major strategies[34]. First 
cluster of approaches[28-33] use a trainable machine learning 
technique to model the depth map of foggy scenes. These 
models recover the foggy image patches by learning the 
knowledge from similar foggy image samples. Although such 
methods showed significant recovering accuracy, their 
computational cost is much more expensive and therefore not 
suitable for many real-time applications. 

The second group of single image defogging frameworks 
use the simple but efficient image enhancement methods, 
without any machine learning techniques. Most of the early 
works used several traditional image enhancement techniques 
such as median filtering[35], white balance correction[14], 
histogram equalization[36], edge smoothing[37], and contrast 
enhancement[12]. These methods are simple, fast, and can be 
used by most real-time applications. However, since they 
apply the enhancement techniques without considering the 
actual factors which causes poor quality in foggy images, their 
performances are limited and even may distort the actual 
colour information. 

Recently, few image enhancement based approaches[15, 16] 
showed significant improvement in single image defogging by 
using stronger priors or assumptions. Based on the 
observations of a large number of foggy and fog-free images, 
the ‘dark channel prior’[15] framework has been proposed and 
showed state-of-the-art results. This method lies in the 
observation of intensities of a few pixels are close to zero in at 
least one colour channel in a local patch of a fog-free image. 
Conversely, this observation does not exist in foggy images, 
and hence the scene can be recovered by estimating the 
thickness of the fog. Although the ‘dark channel prior’ 
approach is simple and effective, it applies the same defogging 
algorithm on all over the image without considering the depth 
map, which leads to distortion in recovered images, especially 
in dense foggy regions. 

A robust single image fog removal framework should have 
state-of-the-art recovering performance and computationally 
efficient since these are the requirements of many real-world 
applications. To achieve this objective, we propose a novel 
defogging framework based on simple but efficient image 
enhancement techniques. The proposed approach relies on the 
assumption of a rough depth map of a foggy image can be 
observed by measuring the thickness of fog in local patches of 
an image. In the initial stage, the proposed approach measures 
the thickness of fog and then the rough depth map is obtained 
by using a superpixel-based segmentation technique. The 
captured depth map information is then used to feed the scene-
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specific information in the dark channel prior algorithm. In 
addition, the proposed approach uses an efficient post-
processing technique to enhance the quality of images. 
Extensive evaluation performed on two publicly available 
benchmark dataset demonstrates that the proposed framework 
outperforms state-of-the-art approaches. 

The following contributions are made in the proposed single 
image fog removal approach: 

1. In contrast to the existing image enhancement based 
approaches, we proposed a novel depth estimation 
technique for single outdoor foggy images. The proposed 
mechanism captures the rough depth map then feed that 
knowledge at different levels of the defogging process to 
increase the recovering performance.  

2. We propose a scene-specific dark channel and 
transmission technique in fog removal. These techniques 
compute the dark channel and the amount of light that 
reaches the camera in the local image regions.   

3. We have conducted extensive experiments on two well-
known benchmark datasets to show the performances of 
the proposed approach. Then the recovering capability is 
compared with 18 state-of-the-art image enhancement 
based defogging approaches.  

We have extended the preliminary work[38] by including a 
fusion based post-processing technique. In addition, an 
ablation study has been conducted to demonstrate the 
effectiveness of the proposed approach. The rest of this 
manuscript is organized as follows: Section II analyses the 
defogging and dehazing approaches. Section III introduces the 
background of this study. Section IV and V describes the 
proposed approach and experimental results, respectively. 
Finally, this manuscript is concluded in Section VI.  

II. RELATED WORK 
For several years, a large number of single image defogging 

and dehazing frameworks have been proposed and their 
performance have been evaluated on various benchmarks[19, 
39, 40]. The most relevant single image defogging frameworks 
are stated in this section. Detail reviews on these frameworks 
are done in[9, 34, 41-43].  

Few early frameworks are focused on image enhancement 
techniques without considering the fog formation model. 
Apurva et al.,[35] used gamma transmission and median 
filtering for defogging. Xu et al.,[36] used an adaptive 
histogram equalization technique to recover the colour foggy 
images. Ngo et al., [22] used a colour attenuation technique to 
restore the information. Also, several other enhancement 
methods used in the past such as wavelet transform, edge 
smoothing, boundary constraint[21], and Retinex theory. Few 
recent approaches use various filtering techniques to improve 
the visibility in foggy images. Tarel and Harutiere [20] used a 
novel filtering technique to improve the speed of the visibility 
restoration. Shin et al.,  [44] used a structured guided norm 
filter to enhance the image. Dhara et al., [28] used an Airlight 
refinement and nonliner balancing technique. These 
approaches tried to enhance the brightness and contrast in 
foggy images. However, their performances are limited since 
they fail to consider why the visual quality of foggy images is 
degraded. 

Recent defogging and dehazing approaches rely on certain 
prior knowledge or observations. Kaiming He et al.,[15] 
proposed a novel single image dehazing approach, referred to 
as Dark Channel Prior (DCP). They found that, in most local 

patches of a fog-free image, intensities of a few pixels in at 
least one colour channel are very low. With this observation, 
they estimate the thickness of fog, and proposed a restoring 
algorithm. DCP is simple and efficient in most cases. Similar 
to the DCP approach, Ju et al., [26] proposed a dehazing 
technique, called Gamma Correction Prior (GCP). They have 
pre-processed the input image by using the Gamma correction 
technique and then used the atmospheric scattering theory to 
obtain the depth map of the image. Berman and Avidan 
proposed [23] an approach based on the observations of 
colours of a fog-free image are well approximated by a limited 
number of distinct colours. 

DCP approach has drawn a grate interest in the image 
enhancement group and a large number of follow-up 
approaches have been proposed[8, 12-14, 16, 18, 27, 45-47]. 
A review on DCP based approach can be found in [48]. Few 
approaches [13, 46] improve the recovering performance and 
speed of DCP by introducing a new smoothing filter, called as 
guided filter. Renjie He et al.,[14] proposed a white balance 
correction technique to refine the DCP algorithm. Shunyuan 
Yu et al.,[45] included a multiple transmission layer fusion 
technique to enrich the performance of DCP. Chunlin Chen et 
al.,[47] replaced the global parameters of DCP by a location 
based local parameter setting. Qingsong et al.,[16] proposed a 
colour attenuation prior model based on the inspirations of 
DCP. Jin-Hwan et al.,[12] proposed a contrast enhancement 
technique for defogging in images and video. Anwar and 
Arun[8] proposed a novel post-processing technique in DCP. 
Salazar et al., [27] used a multi-layer perception to reduce the 
computation time of DCP. Wang et al., [49] used Markov 
random field (MRF) to measure the depth map of a haze image 
and then revise the DCP accordingly.  

Few recent frameworks are proposed based on certain 
fusion techniques. These approaches rely on two or more 
separate image enhancement techniques and then combine the 
results together at the end. Zhu et al., [24] proposed a haze 
removal technique by fusing the DCP and Luminance. 
Thulasika and Ramanan [18] fused the contrast based method 
and statistical based approaches in fog removal. Galdran [25] 
artificially generated multiple images by using a sequence of 
Gamma correction operations and then merged them together 
for image dehazing. Although fusion based techniques showed 
significant recovering performance, they are relying on the 
fusion parameter. Therefore, their performances are different 
from one environment to another.  

Although DCP and fusion based single image defogging 
approaches are simple and computationally efficient, there is 
still a considerable recovering performance difference 
observed when these approaches are evaluated on benchmark 
datasets. Our intention is to reduce this performance difference 
by feeding the depth map information in DCP algorithm 
without using any machine learning model as they are 
computationally expensive. 

III. BACKGROUND  
In this section, formation of a foggy image is described in 

detail. In addition, since we use the Dark Channel Prior 
(DCP)[15] algorithm as the baseline defogging framework in 
this work, it is reviewed in detail.  

A. Atmospheric Scattering Model for Fog formation 
In computer graphics, the formation of fog is described by 

an atmospheric scattering model[50]. In this model, fog is 
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treated as a combination of two components: Direct 
attenuation and Airlight.  Attenuation diminishes the contrast 
and Airlight adds a whiteness effect in a foggy image. Based 
on that, the formation of fog is expressed as: 

 I(x) =  IAttenuation(x)+ IAirlight(x)  (1) 

Where x is the location of a pixel within the image, I is the 
observed foggy image, and 𝐼𝐼𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴  and 𝐼𝐼𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝐴𝐴  are the 
attenuation and airlight on that location, respectively. The 
attenuation describes the scene radiance (i.e. the fog-free 
image that we want to recover) and medium transmission. 
Airlight is the scattered light that leads to the shift of the scene 
colours. The both components can be expressed by the 
following equations: 

 IAttenuation(x)  =  J(x) t(x), (2) 

 IAirlight(x)   =  A (1- t(x)),  (3) 

Where J is the scene radiance, A is the atmospheric light, 
and t is the transmission parameter, which indicates the part of 
the light that penetrates through the fog. The transmission 
parameter t depends on the distance between the camera and 
scene, and it can be described as: 

 t(x)  =   e−βd(x) , (4) 

Where 𝛽𝛽 is the scattering coefficient and 𝑑𝑑 is the depth of 
the scene. The objective of any defogging framework is to 
obtain J, A and t from I. To obtain these values, several 
assumptions and prior knowledge are utilised in many single 
image defogging frameworks. 

B. Dark Channel Prior 
Dark Channel Prior (DCP) is a computationally efficient 

technique, and hence many of the recent defogging and 
dehazing frameworks make use of it as their baseline. 

DCP works only for colour images and is built based on the 
concept of a dark channel. In a colour image, its dark channel 
Jdark can be defined as: 

  Jdark(x) =  Min
y∈Ω(x) � Min

c∈{r ,g, b} Jc(y)� , (5) 

Where Ω(x) is a local image patch centred at x and Jc is the 
colour channel of J. The authors of DCP assume that the 
transmission is constant in the local patch Ω (x) .  Fig.1 
demonstrates the concept of dark channel in a 3× 3 image patch. 
Based on their observation on a large number of fog-free 
images, the intensity of dark channel is tends to be zero, except 
the sky regions as: 

 Jdark →  0 , (6) 

This observation is called as dark channel prior. Based on 
that, the transmission can be derived as: 

 t(x)  =   1 −  𝜔𝜔 Min
y∈Ω(x) �Min

c
𝐼𝐼c(y)
𝐴𝐴𝑐𝑐

�, (7) 

Where ω (0 ≤ ω ≤ 1) is the defogging parameter that will 
control the degree of fog removal. The DCP algorithm assumes 
that the brightest pixel in I is approximately equals to A. Based 
on these assumptions and equations, the scene radiance J is 
described as: 

 J(x) =  
I(x) - A

max(t(x), 0.1)
 + A, (8) 

The performance of DCP defogging framework is mainly 
depends on its key parameters: Patch size (Ω) and defogging 
parameter ω. The dark channel concept becomes stronger for 
larger values of Ω because possibility of a large patch contains 
a dark pixel is increased. On the other side, DCP built on the 
assumption of transmission is consent in a patch, and hence 
large Ω produces halos in near depth scenes. Therefore, based 
on the experiments, patch size Ω is fixed to 15 ×15 in DCP and 
other follow-up approaches. We have observed that Ω should 
be as much as large in constant transmission regions to get the 
better dark channel. Based on equation (4), amount of 
transmission is same in equal depth regions. Therefore, patch 
size Ω should be fixed locally, based on the depth map of a 
foggy image. 

The other key parameter ω is used to control the degree of 
fog removal in the DCP approach. The value of ω is fixed to 
0.95 in DCP and other approaches, since if the entire fog is 
removed from a foggy image, the recovered image may seem 
unnatural. However, based on our observations, ω should be 

Fig. 1 An illustration of dark channel in a 3 ×3 image patch. (a). Red Channel 
values (b) Green Channel values (c) Blue Channel values (d) Obtained dark 
channel values.  

(a) (b) 
Fig. 2 DCP approach [15] shows poor performance (unnatural effect) in 
brighter regions. (a) Foggy image. (b) Recovered image. 
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large in dense foggy regions and be small thin foggy regions. 
Otherwise, as shown in Fig.2, it causes an unnatural effect in 
the recovered image. Since the density of the fog depends on 
the depth map, values of ω should be fixed locally, based on 
the depth map of a foggy image. 

We have also noticed that DCP and follow-up approaches 
show poor performance in brighter regions because they apply 
fixed values for the both key parameters. To overcome the 
limitations of DCP and other dark channel prior based 
approaches, we propose a novel single image defogging 
framework by capturing and including the scene-specific 
information. 

IV. METHODOLOGY  
We proposed a robust framework for single image fog 

removal. The key objective of this framework is to include the 
scene-specific knowledge to the dark channel prior based 
defogging to increase the restoring performance. In the initial 
stage, the proposed approach estimates the rough depth map of 
the foggy image based on the density of the fog in local regions. 

Then the obtained rough depth map is used to calculate the 
scene-specific patch sizes (Ω) and defogging parameters (ω) 
for corresponding individual local regions. Based on the local 
values of these parameters, scene-specific dark channel is 
obtained and then the scene-specific transmission is estimated. 
In the post-processing, we use a colour balancing and white 
balancing mechanism with an adaptive histogram equalization 
technique to enhance the quality of recovered image. The 
proposed approach shows state-of-the-art recovering 
performance in homogeneous and heterogeneous fogs. This 
framework is evaluated on two benchmark datasets and the 
results are compared with 18 state-of-the-art approaches. The 
overview of the proposed framework is shown in Fig.3. The 
details of each steps are explained in the following subsections. 

A. Pre-processing  
In the initial stage of the proposed approach, all the foggy 

images are resized to a static size. This resizing process is used 
to conduct the methodology and evaluation without any bias.  

(a) (b) (c) 

Fig.4. Demonstration of proposed depth estimation technique in a foggy image. (a) Foggy image. (b) Intensity values of dark channel patches. (c) Identified 
equal depth regions by using the superpixel based segmentation technique. Boundaries of the regions are shown in red colour. 

Fig. 3 Flow diagram of the proposed framework. It feeds the scene-specific information into the dark channel prior based algorithm by estimating the rough 
depth map at the initial stage, and then used it to obtain the scene-specific dark channel and the adaptive transmission. In post-processing, white balancing 
techniques are used with adaptive histogram equalization. 
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B. Depth Map Estimation 
Estimating the depth or geometry of a scene from a single 

image is one of the major problems in several computer vision 
based applications. Without a machine learning technique, 
proposing a depth estimation model is a challenging task, since 
the appearance information is insufficient to resolve depth 
ambiguities. However, machine learning based depth 
estimation techniques are computationally expensive and 
hence not suitable for real-time single image fog removal. In 
this background, we focused to develop a simple but efficient 
depth map estimation technique based on some prior 
assumptions and observations in foggy images. The proposed 
technique identifies the distinct depth regions in a foggy image 
and then that knowledge is used to improve recovering 
performance of the proposed defogging framework.  

We have observed that density of fog is peak in depth scenes 
and low in nearby scenes in outdoor foggy images. Also, it is 
observed[15] that the intensity values of dark channel patches 
are proportional to the thickness of the fog. As illustrated in 
Fig.5, we have observed that intensity values of dark channel 
patches are proportional to the density of fogs in that patches. 
Based on these observations, we assume that rough depth map 

of a foggy image can be estimated by the intensity of the dark 
channel. 

In the initial stage of proposed depth map estimation 
technique, dark channel of a foggy image is obtained by using 
a small image patch. Then the intensity values (i) of these 
patches are obtained as,  

 i = [𝑖𝑖1, 𝑖𝑖2, ..., 𝑖𝑖𝑚𝑚] , (9) 

Where m is the number of dark channel patches in an image. 
In the next step of proposed depth map estimation technique, 
adjacent patches with equal or similar intensity values are 
identified and then grouped since they are from equal depth 
regions. To do this task, we have used an image segmentation 
technique.  

Several image segmentation techniques are proposed in the 
past[51] and they are different one to another based on their 
techniques and performances. In general, superpixel based 
segmentation techniques are more suitable to segment the 
irregular shapes. Since the depth map regions are in irregular 
shapes, we have used a superpixel based image segmentation 
algorithm. We have followed the 2D superpixel based 
segmentation algorithm of Achanta et al.,[52] to obtain the 
distinct depth map regions. This algorithm identifies the 
similar depth regions (R) as,  

 R = [𝑟𝑟1, 𝑟𝑟2, ..., 𝑟𝑟𝐴𝐴] , (10) 

Where n is the number of equal or similar depth regions and 
n ≤ m. Fig.4. visualizes the proposed depth map estimation 
technique in a foggy image. In the next step of proposed 
approach, the obtained depth map information is used to feed 
the scene-specific knowledge in defogging. 

C. Scene-Specific Dark Channel 
Defogging performance of DCP and all follow-up 

approaches are mainly depending on the dark channel 
estimation. In all these approaches, dark channel of a foggy 
image is computed (based on equation 5) by assuming the 
transmission is constant within a local patch. All approaches 
are used a 15×15 patch (Ω) without considering any depth 
information of the image. 

(a) (b) (c) 
Fig.6. Effectiveness of the proposed scene-specific dark channel. (a) Foggy image. (b) Dark channel of DCP [15] approach. (c) Proposed scene-specific 
dark channel. 

Fig.5: Relationship between dark channel and density of fog in local 
regions. Dark channel is high in high fog regions and low in low fog 
regions.  
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It is observed that dense fog regions are brighter than thin 
fog regions due to the additive airlight. As shown in Fig. 5, We 
have also notice that dark channel pixel values are lower in 
brighter regions. Based on these observation and fact, we have 
proposed a novel technique to get the robust dark channel, 
which is called as scene-specific dark channel. This proposed 
technique lies on the assumption of large patch sizes are 
desirable in dense fog regions since these regions are much 
brighter and hence the probability of a dark pixel is much 
lower. 

From the initial step of the proposed framework, depth 
regions were identified. We have used that regions to feed 
scene-specific knowledge in dark channel computation. Firstly, 
average intensity (ri) values of each regions are calculated, and 
then these values are considered as the density of fog in that 
regions. Based on the average intensity values, we have fixed 
the patch size for each region. Large patch size is fixed for high 
density regions while small size is fixed for low density 
regions. The details of this assignment are described in Table 
I. 

TABLE I: AVERAGE INTENSITIES OF REGIONS AND CORRESPONDING PATCH 
SIZE ASSIGNMENT. 

Average Intensity of Regions 
(ri) Patch Size (Ω) 

ri   ≥ 240 15 × 15 
240 > ri   ≥ 140 11 × 11 
140 > ri   ≥ 90 7 × 7 

ri    < 90 3 × 3 
Based on these patch size assignments, dark channel of a 

local region Jr
dark is calculated as 

  Jr
dark (x) =  Min

y∈Ω(x) �
Min

c∈{r ,g, b} Jc(y)� , (11) 

Where Ω (x) is a local image patch centred at x in region r, 
and Jc is the colour channel of J. Then, the overall dark channel 
of an image is calculated as: 

   Jdark =  J1
dark ∪ J2

dark  .... ∪ Jn
dark , (12) 

Where n is the number of depth regions in that image. The 
proposed technique computes more robust scene-specific dark 
channel based on the depth map of corresponding local regions. 
This proposed technique is more robust than the dark channel 
computation of previous approaches. Fig. 6 visualizes the 
effectiveness of our technique by comparing the scene-specific 
dark channel with dark channels of DCP and follow-up 
approaches. It is clearly seen that the proposed scene-specific 
dark channel produces more robust results based on the depth 
map information.  

D. Weighted Atmospheric Light Estimation 

Atmospheric light (denoted as A in equations) estimation is 
an important step in all defogging frameworks since it is used 
to recover scenes. DCP and follow-up approaches estimate the 
A by assuming the intensity of the brightest pixel in the dark 
channel as the A in a foggy image. We have used the scene-
specific dark channel to estimate the atmospheric light 
estimation.  

In the proposed approach, a set of brightest pixels of the 
scene-specific dark channel are identified. Among them top 
0.1% brightest pixels are selected, and their average intensity 
value is considered as the A. Since our scene-specific dark 
channel is better than the previous dark channel computations, 
more accurate A is obtained.  

E. Scene-Specific Transmission Estimation 
Transmission (denoted as t in equations) indicates the 

amount of light that penetrates through the fog. Robust 
transmission estimation is important in all defogging 
frameworks since it is used to recover the fog-free image 
through equation 8. Based on equation 7, the transmission 
estimation process is mainly dependent on the defogging 
parameter ω since it controls the degree of fog removal in an 
image.  

In DCP and follow-up approaches, ω is kept to a fixed value 
(0.95), and hence the fog removal process is conducted with 
equal probability in all the pixels of an image. However, we 
have notice that conducting fog removal with equal probability 
in all pixels will create an unnatural effect in the recovered 
image. The degree of fog removal should be large in dense fog 
regions and be small in thin fog regions. Based on that concept, 
we have used a novel technique, which is called scene-specific 
transmission estimate. 

TABLE II: AVERAGE INTENSITIES OF REGIONS AND CORRESPONDING ω 
VALUES ASSIGNMENT 

Average Intensity of Regions 
(ri) defogging parameter (ω𝒓𝒓) 

ri  ≥ 230 0.95 
230 > ri   ≥ 140 0.9 
140 > ri   ≥ 100 0.8 
100 > ri   ≥ 80 0.7 

ri   < 80 0.6 
We have utilised the obtained depth map regions, which 

were identified at the initial stage, to fix the density based local 
ω  values. The average intensity of each depth regions is 
computed and then corresponding local ω values are assigned 
based on the experiment. High values are assigned for high 

(a) (b) 
Fig.7. Effectiveness of the proposed scene-specific transmission estimate. 
(a) Transmission of the DCP [15] approach. (b) Proposed scene-specific 
transmission. 

(a) (b) Fig.8. Effectiveness of the white balancing technique. (a) Recovered 
image (b) post-processed image. 
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density fog regions and low values are assigned for low density 
regions. The details of this process are described in Table II. 

Based on the corresponding local defogging parameter, the 
scene-specific transmission is calculated as:  

 t(x)  =   1 −  ω𝐴𝐴
Min

y∈Ω(x) �Min
c
𝐼𝐼c(y)
𝐴𝐴𝑐𝑐

�, (13) 

Where ω𝐴𝐴 is the region specific defogging parameter. The 
proposed technique removes more fog in high density regions 
while keeps few amounts of fog in thin density regions. 
Therefore, the recovered fog-free image becomes more natural 
than the previous approaches. Fig.7 compares the heatmap of 
DCP[15] and proposed scene-specific transmission estimate. 
As illustrate in this picture, proposed transmission technique is 
more accurate than the previous approaches. 

F. Recovering Scene Radiance 
Similar to other approaches, scene radiance J is recovered 

by using the equation 8 in the proposed framework. The 
estimated scene-specific transmission and inputted foggy 
images are used to recover the fog-free image.  

G. Post processing: White Balancing 
In the proposed approach, quality of recovered image is 

enhanced further by using few post processing techniques. In 
the initial state of post processing, a white balancing algorithm 
is used, which is similar to [14]. Let I be the recovered image 
and it is normalized between 0 and 1. Then the white balancing 
technique is applied as: 

   𝐼𝐼𝑐𝑐′  =  W. 𝐼𝐼𝑐𝑐, (14) 

Where 𝐼𝐼𝑐𝑐 and 𝐼𝐼𝑐𝑐′  are the colour channel of recovered image 
and post-processed image, respectively. 𝑐𝑐 ∈  {𝑅𝑅,𝐺𝐺,𝐵𝐵}  is a 
colour channel. W is a three channel matrix and it is obtained 
as:  

   𝑊𝑊𝑐𝑐 =  
𝐴𝐴𝑐𝑐

𝑚𝑚𝑚𝑚𝑚𝑚𝑐𝑐
 , (15) 

Where 𝐴𝐴𝑐𝑐  is the Atmospheric light. This white balancing 
technique provides more natural effect in the recovered image. 
Fig.8 shows the effectiveness of the white balancing technique.    

H. Post processing: Fusion based contrast enhancement 
In the next step of post processing, a fusion based contrast 

enhancement technique is used to improve the quality of 
recovered image. This proposed technique computes two 
inputs by using two different mechanisms and then combine 
the results by using an efficient fusion algorithm.  

The first input (𝐼𝐼1) of the fusion mechanism is the white 
balanced recovered image from previous step. The second 
input (𝐼𝐼2) of the fusion process is the colour corrected version 
of the recovered image. We have used the local adaptive 
histogram equalization technique[53] to obtain the colour 
corrected image. Similar to [54], we have used a multiscale 
fusion technique to obtain the restored image. In this process, 
the enhanced recovered image F is obtained at every pixel 
location (x,y) as: 

   𝐹𝐹 (𝑚𝑚, 𝑦𝑦)  =  𝑊𝑊1(𝑚𝑚, 𝑦𝑦). 𝐼𝐼1(𝑚𝑚,𝑦𝑦)  + 𝑊𝑊2(𝑚𝑚, 𝑦𝑦). 𝐼𝐼2(𝑚𝑚, 𝑦𝑦), (16) 

Where 𝑊𝑊1  and 𝑊𝑊2 are the gaussian normalized weights. 
This post processing technique is used to produce more natural 
effects in the recovered image. Fig.9 compares the recovered 
image and fused image.  

V. EXPERIMENTAL RESULTS 
In this section, we present the experimental evaluation of 

the proposed defogging framework. Initially, implementation 
details and evaluation criteria are described.  Then the details 
of the dataset are presented. Then the effectiveness of the 
proposed scene-specific defogging approach is illustrated 
through an ablation study. Finally, the evaluation results are 
matched with the state-of-the-art defogging frameworks. 

A. Implementation Details 
The architecture of the baseline defogging framework is 

built from the DCP[15] approach. In the pre-processing of the 
proposed approach, all foggy images are resized to 500×500. 
In the proposed depth estimation technique, a 3×3 patch is used 
to obtain the density of the fog. In the next step, each image is 
segmented into five to seven regions by using the superpixel 
based technique. The proposed approach is implemented in 
MATLAB. All experiments are conducted on an Intel core i7-
8550U CPU. 

B. Evaluation Protocols 
Mean-Squared Error (MSE), Peak Signal-To-Noise Ratio 

(PSNR) and Structural SImilarity Index (SSIM) are the well-
known metrices to evaluate the performance of defogging and 
dehazing frameworks. MSE calculates the average of the 
squares of the errors between ground truth (fog-free) image (G) 
and recovered image (F) by the following equation: 

 MSE =  
1

M × N
 �� [ F(i, j) - G(i, j) ]2

N

j=1

M

i=1

, (17) 

Where M  and N  are the width and height of the image, 
respectively. PSNR measures the peak error as follow: 

 PSNR =  10 𝑙𝑙𝑙𝑙𝑙𝑙10  �
𝑀𝑀𝐴𝐴𝑀𝑀𝐺𝐺2

𝑀𝑀𝑀𝑀𝑀𝑀
�, (18) 

Where MAXG is the maximum pixel value in the ground 
truth image. Since PSNR is depending on MSE, both metrices 
are producing similar results. The SSIM[55] index is used to 
measure the quality of an image based on a reference image. 
SSIM compares the luminance, contrast, and structure 
between the ground truth image and recovered fog-free image. 
The SSIM index is measured as: 

 SSIM =  
(2µ𝐹𝐹µ𝐺𝐺 + 𝐶𝐶1 )(2𝜎𝜎𝐹𝐹𝐺𝐺 + 𝐶𝐶2 )

(µ𝐹𝐹2 + µ𝐺𝐺2 +  𝐶𝐶1 )(𝜎𝜎𝐹𝐹2 + 𝜎𝜎𝐺𝐺2 + 𝐶𝐶2 )
 (19) 

Where µ𝐹𝐹 and µ𝐺𝐺  are the average of fog-free image and 
recovered image, respectively. 𝜎𝜎𝐹𝐹2  and 𝜎𝜎𝐺𝐺2  are the variance of 

(a) (b) 

Fig.9. Fusion based contrast enhancement (a) recovered fog-free image. 
(b) Enhanced post-processed image.  
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fog-free image and recovered image, respectively. 𝜎𝜎𝐹𝐹𝐺𝐺 is the 
covariance of F and G. 𝐶𝐶1 and 𝐶𝐶2 are two variables and used to 
stabilize the division. These variables are computed as: 

   𝐶𝐶1 =  (𝐾𝐾1 𝐿𝐿)2, (20) 

  𝐶𝐶2 =  (𝐾𝐾2 𝐿𝐿)2. (21) 

Where 𝐾𝐾1 and 𝐾𝐾2 are small constants. 𝐿𝐿  is the dynamic 
range of pixels values. A high SSIM index represents high 
similarity between the ground truth image and recovered fog-
free image. 

In this evaluation, we have used the PSNR and SSIM to 
measure the distance error and the similarity between the 
ground truth image and the recovered image, respectively. 

C. Benchmark Datasets  
In general, foggy images and corresponding ground truth 

(fog-free) images are important to evaluate the performance of 
the defogging frameworks. However, it is difficult to obtain 
such kind of pairs of images and hence synthetic images are 
used to evaluate the recovering performance in many 
approaches. In this background, the proposed approach is 
evaluated on two benchmark datasets, called Foggy Road 
Image DAtaset (FRIDA)[19] and Foggy Road Image Dataset 
version 2 (FRIDA2)[40].  

FRIDA benchmark has 90 synthetic foggy images of the 
outdoor road scenes and the same number of fog-free images. 
All the images of FRIDA are in the size of 640 × 480. It has 
four types of heterogeneous foggy images, which were 
generated by using different parameter settings.  

FRIDA2 benchmark has 330 synthetic outdoor foggy 
images of the road scenes including the fog-free (ground truth) 
images. It has homogeneous foggy images and three types of 
heterogeneous foggy images. All the images are the size of 640 
× 480. A set of ground truth image and foggy image pairs of 
both datasets are shown in Fig.10.  

D. Ablation Studies  
The proposed scene-specific defogging framework has 

several step-by-step process. In addition, the recovered image 
is further corrected by using a set of post processing techniques. 
In the proposed approach, several parameters have been used 
in each step. Therefore, an ablation study is performed to 
validate the methodology and to verify the parameters. The 
FRIDA benchmark is used in this study.  

1) Verification of the parameters: In the proposed depth 
estimation technique, a small patch is used to obtain the 
amount of fog in an image. Table III compares the defogging 
performance for different patch sizes.  

TABLE III: COMPARISON OF PATCH SIZE FOR DEPTH ESTIMATION  

Patch Size Average SSIM 
3×3 0.8290 
5×5 0.8288 
7×7 0.8283 
9×9 0.8278 

Based on these results, patch size of 3×3 is used in this study. 
In the scene-specific dark channel step, patch sizes are 

assigned based on the average intensity of local regions (Table 

II). We have tested various patch sizes (in descending order) 
and picked the best performing one. Table IV compares this 
assignment for different patch sizes.  

TABLE IV: COMPARISON OF PATCH SIZES FOR SCENE-SPECIFIC DARK 
CHANNEL 

Patch Sizes Average SSIM 
29×29,21×21,15×15,9×9 0.8271 
25×25,17×17,13×13,7×7 0.8285 
21×21,15×15,11×11,5×5 0.8290 

15×15,11×11,7×7,3×3 0.8295 
 Based on these results, 15×15,11×11,7×7 and 3×3 patch 

sizes are used to obtain the scene-specific dark channel.  

2) Effectiveness of Steps: Performance of the proposed 
approach is depending on the depth estimation technique and 
post processing steps. Table V compares the performance of 
these steps based on their individual and joint contribution in 
defogging.   

TABLE V: COMPARISON BETWEEN INDIVIDUAL AND JOINT STEPS 

Baseline 
(DCP) 

Depth 
Estimation 

White 
Balancing 

Contrast 
Enhancement 

Average 
SSIM 

√    0.6549 
√ √   0.7921 
√ √ √  0.8251 
√ √ √ √ 0.8296 

Based on the results in Table V, it is clearly seen that 
feeding depth information in scene-specific dark channel and 
scene-specific transmission estimation brings more gain than 
the post processing steps. Approximately, the depth estimation 
technique increases the defogging performance by 14%.

Fig.10 Ground truth – foggy image pairs of benchmarks. (first column) FRIDA benchmark (second column) FRIDA2 benchmark 
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TABLE VI: PERFORMANCE COMPARISON ON FRIDA AND FRIDA2 BENCHMARK DATASETS. THE BEST AND SECOND  SCORES ARE SHOWN IN  RED AND BLUE 
COLOURS, RESPECTIVELY.

E. Comparison with state-of-the-art defogging approaches 
The performance of the proposed defogging framework is 

compared with state-of-the-art single image defogging 
approaches on FRIDA and FRIDA2 benchmarks. We 
compare the proposed approach with the works of Kokul and 
Anparasy (our preliminary work)[38], Galdran [25], 
Thulasika and Ramanan [18], Qingsong et al.,[16], Jin-Hwan 
et al.,[12], Meng et al.,[21], Tarel et al.,[19], Ngo et al.,[22], 
Berman and Avidan[23], Tarel and Hautiere[20], Shin et 
al.,[44], Zhu et al.,[24], Dhara et al.,[28], Salazar et al.,[27], 
He et al., [13], DCP[15], He et al.,[14], Gundawar et al.,[17], 

and Ju et al.,[26]. In this comparison study, source codes of 
all approaches are obtained and then evaluated on FRIDA and 
FRIDA2 benchmarks with the same parameter settings.  

Table VI compares the performance of proposed single 
image defogging framework with other state-of-the-art 
approaches. Fig.11 compares the MSE and SSIM in FRIDA 
benchmark. Similarly, Fig.12 compares these values in 
FRIDA2 benchmark. Based on these tables and graphs, it is 
clearly seen that the proposed framework produces excellent 
defogging performance in both benchmarks for both 
evaluation metrices. 

Defogging Approach 
FRIDA FRIDA2 

PSNR SSIM PSNR SSIM 
Proposed Approach  15.3365 0.8296 12.7029 0.7530 
Our Preliminary Work[38] (2020) 14.5531 0.8225 12.2428 0.7427 
Galdran [25] (2018) 14.8589 0.8207 12.3126 0.7462 
Thulasika and Ramanan [18] (2015) 14.7063 0.8126 12.3097 0.7404 
Qingsong et al.,[16] (2015) 13.9140 0.8051 12.3959 0.7463 
Jin-Hwan et al.,[12] (2013) 14.3187 0.8043 12.3786 0.7404 
Meng et al.,[21] (2013) 14.1193 0.7940 12.4388 0.7318 
Tarel et al.,[19] (2010) 12.1701 0.7921 10.4687 0.7354 
Ngo et al.,[22] (2019) 13.6022 0.7790 12.3109 0.7312 
Berman and Avidan[23] (2016) 13.6960 0.7778 11.9464 0.7200 
Tarel and Hautiere[20] (2019) 13.8208 0.7747 12.4109 0.7262 
Shin et al.,[44] (2020) 14.2896 0.7394 12.4476 0.7231 
Zhu et  al.,[24] (2017) 13.3543 0.7323 11.7765 0.6646 
Dhara et al.,[28] (2010) 13.1461 0.7249 11.3341 0.6107 
Salazar et al.,[27] (2018) 13.1038 0.7246 11.9212 0.6718 
He et al., [13] (2010) 12.7739 0.7182 11.1081 0.6096 
DCP[15] (2009) 12.9382 0.6192 11.6093 0.5947 
He et al.,[14] (2012) 12.4027 0.4273 10.7532 0.3935 
Gundawar et al.,[17] (2014) 11.0105 0.3758 10.8823 0.4154 
Ju et al.,[26] (2020) 9.7032 0.3626 8.7933 0.2983 

Fig. 11. Comparison of MSE (lowest is best) and SSIM(highest is best) in FRIDA benchmark. 
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F. Qualitative Comparison on Real-World Scenes 
Although, proposed approach showed excellent 

performance on FRIAD and FRIDA2 benchmarks, images of 
these datasets are artificially created (synthetic) images.  
Therefore, we have conducted an additional comparison on 

some challenging real-world foggy images. These images are 
collected from multiple internet sources. Since these images 
have not any ground truths (fog-free images), it is difficult to 
rank them based on their recovering performance. However, 
qualitative comparisons of these images are widely accepted 
by many researchers.  

Fig.12 Comparison of MSE and SSIM in the FRIDA2 benchmark 

(a) (b) (c) (d) (e) (f) 
Fig.13. Qualitative comparison of five best performing methods on real-world images. (a) Foggy images (b) Galdran  [25] ‘s result  (c) Thulasika & 
Ramanan[18]’s results (d) Qingsong et al.  [16]’s results (e) Jin-Hwan et al. [12]’s results (f) Our results.  
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Fig.13 shows the qualitative comparison of the proposed   
approach with five top performing defogging frameworks.  As 
shown in this figure, the proposed approach successfully 
resorted the details of scenes and objects. In addition, it is 
observed that while outputs of other’s approaches are 
oversaturated and fail to balance the colour and contrast, our 
approach produces more natural outputs. Both comparison 
studies proved that the proposed approach can restore the fog-
free images from homogeneous and heterogeneous fogs. 

VI. CONCLUSION  
In this study, an image processing based simple but 

efficient framework is proposed for single image defogging. 
Based on the density of fog in local regions, we have obtained 
the rough depth map of a foggy image, and then used that 
depth map information to feed the scene-specific knowledge 
to defogging. In addition, we have proposed a scene-specific 
dark channel estimation technique and a transmission 
estimation technique, which are used to improve the 
recovering performance. Also, the quality of recovered 
images is further improved by using a set of post processing 
techniques. The proposed defogging method is evaluated on 
FRIDA and FRIDA2 benchmark datasets and obtained 
15.3365 and 12.7029 of PSNR values and 0.8296 and 0.7530 
of SSIM indexes, respectively.  

As the future work, we plan to train a Convolutional Neural 
Network (CNN) to learn the depth of foggy images based on 
the availability of a large number of training samples. In 
addition, we plan to use a Generative Adversarial Network 
(GAN) to generate additional number of samples to manage 
the data deficiency.  
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