
International Journal on Advances in ICT for Emerging Regions 2021 14 (3):

International Journal on Advances in ICT for Emerging Regions July 2021

A Scoping Review on Automated Software Testing
with Special Reference to Android Based Mobile

Application Testing
Fathima Naja Musthafa#1, Syeda Mansur2, Andika Wibawanto3 and Owais Qureshi4

Abstract— Despite all the techniques practiced for ensuring
the quality of a software product, software testing is being the
widely accepted practice. With the explosive evolution and the
usage of mobile application, new developments in the process of
software testing are introduced too to acquire market presence
in mobile application development by introducing high quality
products. As of this the introduction of automated tools for
testing has gained attention in the last few years. Though the
topic of automation in software testing has been there for a
while, introduction of new tools and techniques has gained
attention recently. Hence, this research work focuses on
investigating and analyzing the current trends on automated
testing of mobile application by choosing the android platform
as a case study. With the aim of fact finding, a systematic
literature review was carried out on existing studies which were
retrieved from different databases by exploring the electronic
search space. It discusses the points based on the chosen
research questions by referring the papers cited. The topics
discussed in this review article includes the facts related to why
and how automated testing on mobile application, the tools and
techniques used and the challenges on it. This work also
highlights why the focus has been concentrated on the mobile
application testing rather than generally highlighting the
importance of automated software testing. As a conclusion the
paper proposes some good practices on the topic based on
existing literature reviewed and referred throughout the study.

Keywords— Automated Testing Techniques, Mobile
Application Testing Tools, Quality Assurance, Software Testing

I. INTRODUCTION

Despite the works done by researchers and practitioners
about the numerous techniques for software quality
assurance, it is widely accepted that software testing is the
most practiced approach for evaluating and assessing the
quality of a software product [50]. The main goal of this
paper is to provide the insights from successful research
works carried out in software testing and testing techniques
for mobile application which appears to be the most
significant points relevant to the topic.

Li and his co-authors, in their work published in 2014 state
that the main objectives of software testing are:

 1. A test is carried out to demonstrate the errors that is
present in a product.

2. A well-defined testing approach has the higher chance of
discovering errors that exist.

 3. A successful test operation should always discover any
future faults and regression failures.

The common term used in literature as ‘mobile testing’
refers to various testing strategies like testing mobile devices,
testing mobile applications and mobile web applications
testing [22]. Thus, the term ‘mobile application testing’ in
this paper refers to testing mobile applications that run on
mobile platforms with the use of popular testing methods and
tools that ensure quality in behaviors and functions as well as
features like usability, security, connectivity and so forth.
Various work in the literature highlights the fact that mobile
application testing is much different from the conventional
software testing as it has unique requirements which includes
device compatibility of the application with different mobile
devices with ranging screen sizes to UI lags [35]. Apart from
that, since mobile applications are developed to run on
mobile devices that operates on different operating systems,
having different size and computing power resources [22],
the way of testing those also must be to the standard that
differs from normal conventional software products. Hence,
this paper clearly highlights the importance of testing mobile
with the support of literature in the second part of section two
‘critical evaluation of literature’.

According to Cap Gemini Quality Report [1], the barriers
to testing mobile application have moved from tools to
methods; 56% of companies do not possess the right testing
process/method, 52% do not have the devices instantly
available, 48% do not have test experts, 38% do not have in-
house testing environment, 37% do not possess the right
testing tools, and 33% do not receive enough time to test.
However, the data shows that mobile testing rose rapidly in
2013 compared to 2012 where statistics prove that 55% of
organizations implemented new methods and tools to test
functionality, performance, and security of mobile
applications and devices in contrast to 33% in 2012. The rise
in percentage is optimistic.

Based on the strategies used to carry out the testing
process, the automated software testing for mobile
application is classified under different categories. Although
various techniques used differ in the approaches used, these
testing does not fail to accommodate the concept of

Correspondence: F. N. Musthafa #1 (E-mail: mmfnaja@gmail.com)
Received: 28-12-2020 Revised:17-05-2021 Accepted: 24-05-2021
F. N. Musthafa#1, S. Mansur2, A. Wibawanto3 and O. Qureshi4 are form
University of Malaya, Malaysia. (mmfnaja@gmail.com,
smansur.irene@gmail.com ,andika.wibawanto@gmail.com
,umerkhattab42@gmail.com)

This paper is an extended version of the paper “Automated Software
Testing on Mobile Applications: A Review with Special Focus on
Importance, Tools and Challenges in Android Platform” presented at
the ICTer Conference (2020)

DOI: http://doi.org/10.4038/icter.v14i3.7227

	

A Scoping Review on Automated Software Testing with Special Reference to Android Based Mobile Application Testing 14

July 2021 International Journal on Advances in ICT for Emerging Regions

automation. This paper gives a detailed insight of some of
such techniques used and the tools utilized in addressing the
features of those techniques under the third topic of the
second section.

Despite the developments and research in software testing
for mobile applications, the challenges faced continues in
relevant to test environment and standards, modeling, and
coverage criteria [22].

This paper is organized in the form of sections. Section
one states about the content of the sections in this paper as
well as highlight the key points explained in this review
followed by the second section that discusses the research
methodology adopted for this study. The third section
discusses the findings and results based on the identified
research questions, that explains about the key phrases found
to be relevant to the topic and they are well explained with
the support of literature referred in there. The final section is
the conclusion, and it discusses the key points and important
conclusions arrived during this literature review and provide
information about major recommendations on these topics.
Reference list follows the conclusion part, and it lists all the
references used for this literature review work.

II. RESEARCH METHOD
This study adopts a systematic literature review process

proposed by Kitchenham et al. on how to perform systematic
literature review in software engineering fields [2]. The
subsequent parts of this manuscript shows how the
methodology has been adopted in conducting this systematic
literature review.

A. Research Questions

There are four main research questions in this review and
the discussion part mainly adhere to the focus on these
research questions.

1. What does automation in software testing refers to?

2. What is the importance of automated mobile

application testing?

3. What tools and techniques are used in automated

software testing of mobile applications with respect

to android platforms?

4. What are the major challenges in automated

software testing on mobile applications?

B. Search Strategy

The search for study was conducted in the electronic
search space. Electronic databases were explored with the
target of research questions based on key word search
approach. To identify the suitable literature, inclusion and
exclusion criteria was used among the search results. The
researchers also used some screenings on the process of
identifying the relevant literature to remove redundancies
and irrelevant studies with mutual consents.

C. Information Sources

Popular scientific databases were chosen to conduct the
electronic search and retrieve the relevant literature for this
review. The databases include IEEE Xplore, ACM digital
library and ScienceDirect. Additional records were also
found via google scholar.

D. Search Terms

The scope of the study being little broader without fixed
taxonomy, a range of search strings were used as keywords
across the electronic search space. The keywords defined
were used with Boolean combinations such as “and” and “or”
with the aim of minimizing the irrelevant results. The
keywords are “Automated testing”, “Mobile application”,
“Testing tools”, “Quality Assurance”, “Software Testing”,
“Test automation”, “Testing challenges”, “Testing
techniques”, “Android platform”, “Mobile Devices” and
“Test strategies”.

E. Inclusion and exclusion criteria

The literature selection for the study opt to be with the
following characters.

1. The study must be published within the timeframe
of 2000 to 2019.

2. The study must be in English

3. The study must include relevant information of

mobile application testing covering the scope of the
study.

Studies which were excluded were based on the following
concerns.

1. If the study does not fulfill the inclusion criteria

2. If the study does not technically prove to be rich in
content.

III. LITERATURE REVIEW AND KEY FINDINGS

This section highlights the facts adopted from the
reviewed literature that adheres to the research questions
identified and given in the section two of this paper. Although
the main focus was to investigate the current state-of-the-art
facts based on the relevant research questions and the key
topic, this section tends to summarize the findings in the form
of structured way as to clearly relate the facts identified from
different literature so as to provide the connectivity between
the findings. Also, the results are based on literature and
articles published between 2000 and 2019, thus giving
importance to the recent developments in the topic. Though
the articles retrieved from the internet are verified according
to the source origin, it was double checked for the authenticity
of the content. The consequent sub sections of the third
portion of this paper provide detailed discussion on the
research questions thereafter.

15 F. N. Musthafa#1, S. Mansur2, A. Wibawanto3, O. Qureshi4

July 2021 International Journal on Advances in ICT for Emerging Regions

A. Software Test Automation
Software Testing is one of the important phase of any

software development and has been widely used in the
industry as a quality assurance technique for evaluating the
specification, design and source code [23], [7]. Since the
software is designed in a way that is more complex, the need
of testing complex software becomes the important phase of
any software development. Hence, the importance of testing
should not be underestimated [60]. In fact, software testing is
a part of any software development and plays a major role in
the cost factor of any software [23]. Software testing is
expensive and labor intensive. According to literatures,
Software testing process covers up to 50% of software
development costs and it is even more for safety-critical
applications [6].

The main objective of a software testing is ensuring a
quality software product [23]-[25], [50], [27] at the end of a
development phase before it is put into deployment. It does
not mean that software testing is carried out at the end of an
Software Development Life Cycle (SDLC). But it may be
performed at any stage wherever necessary and it totally
depends on the project and the model of SDLC used for the
development.

In the process of software testing, an outcome of a
software development process is evaluated for the overall
functionality and behaviors using a set of test cases - whether
it satisfies the specification requirements or shows any
behavior of fault in the software. Although the concept of
software testing is stated to be used for demonstrating the
absence of errors [35], [27] in any software product, testing is
always defined to be finding errors as much as possible as it
improves the assurance that the software being tested is much
reliable. Thus, a set of test plans are executed to find out that.
The way in which these test plans are executed, divides the
software testing process in to two major categories like
manual and automatic testing.

In manual testing, a tester carries out a written set of test
plans which contains the test cases [23]. Here a tester
manually executes the program to check for each test case. As
this is the approach of manual testing, the automated testing
is automating these test activities and the whole test cases are
carried out automatically.

Garousi and Mäntylä describe the automation testing in
their work published in 2016 as the “use of special software
(separate from the software being tested) to control the
execution of tests and the com-parison of actual outcomes
with predicted outcomes” [23]. Key points that these authors
trying to mention are “special software” and “control the
execution’. By this, the authors mean that the testing process
uses a software other than the software needed to be tested and
the whole process is automated. Although various researchers
define the term automation testing in their own style of
wording, none of them have missed to portray the same
concept.

In every test activity, it is always essential to find out why
an approach is selected. Since software testing is one of the
major phases in any software development, it is labour
intensive and expensive. According to a literature, it is stated
that testing takes up to 50% of the total cost of any software
development. It is sometimes even more than that according
to some literature. As this is the fact regarding testing cost, it

is essential to manage it and that is the goal of automation
testing.

Another goal of automation testing according to literatures
is, minimizing human error [30]. Mistakes, made by human
beings, be-come errors which tend to become faults and
failures. Another goal is making regression testing easier [30],
meaning, that when automation testing is executed to find the
errors in any software testing, it makes the process of finding
any consequences of any patch works done during a bug fix.
Thus, this will ease the problem of overcoming any possible
future errors caused by a bug fix. Software testing phase on
any software development process tend to start along with the
beginning of the development in order to avoid the
complexities in testing at later stages. Although the approach
implemented for testing fully depends on the basis of project
requirements and the model of software development used, it
is mandatory to thoroughly study which approach is to be used
for the purpose of testing in order to avoid future errors and
failures in testing. Thus, it is essential to identify when and
what is to be tested using a particular testing strategy. A test
process comprises several steps, beginning from planning, test
specification, executing up to reporting. Each of these steps
could be carried out using various approaches. Apart from
using automation testing in the test execution process it could
be used in various stages for various purposes too. Thus, the
potential use of automation in various testing stages can be
test case design, scripting, evaluation, and test result reporting
[23], [27], [30], [32]. Based on these, an overview of this is
summarized in figure 1.

Figure 1: An overview of automation across the software testing process

B. Importance of Automated Mobile Application Testing

Recent years have proven to be a great revolution for
mobile industry and market due to its extensive support and
sophisticated tasks being performed, rather than just simple
operations as a decade ago [32], [33]. The mobile has been
used by many giant tech industries and companies which are
not directly related to technology. Mobiles are being used as
a common platform to manage tasks for everyday life and
activities. Since its involvement has become a norm in our
lives for every mere and essential task, any
breakdown/unexpected behavior of any sophisticated mobile
application can result in a great disaster for industries and
enterprises.

Users’ unpleasant experience (crashing, bugs etc.), while

exploring mobile app, can consequently prevent the users
from reusing the app. Nearly 48% of users will not try the
application again based on one survey [14]. This can lead to
lower downloads, thus reduced revenues. Therefore, to avoid
such consequences after all the time, energy and money
invested on any mobile app, various Software Testing on

A Scoping Review on Automated Software Testing with Special Reference to Android Based Mobile Application Testing 16

July 2021 International Journal on Advances in ICT for Emerging Regions

mobile application is certainly necessary. Meeting graphical
interface sketches, functional requirements and flow of app
can be achieved and may attract users. Ensuring high quality
is essential than anything else.

The audience of mobile application is escalating
immensely as mobile devices continue to be used and seen
everywhere. MarketWatch’s research states that, 14% of
online purchases are made through mobile platforms and will
continue to grow gradually in upcoming future. One of the
statements from PayPal’s senior director of global initiatives,
Anuj Nayar, to MarketWatch states that “we’ve seen our
mobile growth rise from less than one percent of our payment
volume in 2010 to more than 20 percent in 2014”. This
notable new height in this area shows more and more
businesses are cashing-in on.

Needless to say, making sure an app is working correctly

is essential. The same hard work that is required for product
concept and building a business, is also necessarily to be
done with quality control and testing for mobile applications,
and that kind of testing is not something that can be done in-
house. It can only be achieved by using professional mobile
testers’ skills, who can identify issues before it affects the
end-user which gets them frustrated, as well as architect ways
to fix them before the application is rolled-out.

The following comparison reflects the idea of why mobile

application is foremost important than web and desktop
platform. It also provides an insight of all possible aspects
which explains why mobile platform application is complex,
time consuming and detailed in comparison to its
counterparts.

TABLE I. IMPORTANCE OF MOBILE APP TESTING OVER WEB /
DESKTOP SYSTEM TESTING WITH COMPARATIVE SUMMARY

Criteria Mobile Web/ Desktop
Frequency of
release

Release
Software
updates quite
frequently for
the improvement
of devices,
security and UI
lags, etc. This
effect mobile
behavior in a
way that old
compatible apps
stop working.
Thus, the testing
team needs to be
cautious.

Web and Desktop
versions are released
not so often, hardly
twice or once in a
year or two.

Usage Mobile apps
have large
adaption from
mid – high level
enterprises and
being used for a
general purpose
which makes it
complex enough
to support all
genre of
applications
supporting up to

Desktop applications
are mostly used by
big enterprises where
there is less variety
of desktop machines
to support. For web-
app, only concern is
on which cloud or
another server the
web-app needs to be
deployed.

13000 devices as
per google play
console [19].

Communication
link

Mobile
applications are
connected
through
sophisticated
interlinked
bridge called
Restful APIs or
web services
which make the
transaction
happen through
a mobile
meaningful
format known as
JSON [56].

Web application is
hosted on the same
server where the
database is deployed.
Thus, the chances for
being vulnerable in
terms of security,
non-availability of
data is less than its
counterpart mobile
application [21].

Development life
cycle

Built with a
complex life
cycle to handle
all kinds of
unexpected,
interrupted
behaviors in
more intelligent
way.

No such life cycle
due to not being
developed with an
intention for being a
personal platform
rather being
originally used by
everyone on same
hosted server serving
millions of users.

Possible outcomes, when any app is not tested with the

context of mobile lifecycle, may lead to great consequences
such as, mobile being used with a purpose of multi-tasking
device. It drives the concept of Background and Foreground
app [18]. However, Backgrounded apps brought to the
foreground will often crash if state is not persisted properly.
States can be seen in Figure 2 – Android Lifecycle (For
instance, OnStart/OnStop and
viewWillAppear/viewWillDisappear for Android.

1. The testers should also be aware that Mobile’s
intelligent algorithm destroys app whenever it deems
necessary for more memory allocation. If OnDestroy
state is not correctly defined it might lead to
unexpected behavior or loss of user’s data on next
round of using app.

2. Mobile’s platform also forces the developers to build
the cache controller to load heavy data for avoiding
misinformation or non-availability of data [37].

3. There are often multiple ways that a hook can be
called, and the testers need to be aware of the
differences in certain situations.

4. As what was mentioned during comparison in table
1, often updates/patches may affect the system’s
overall flow in older android system. No guarantee of
OnStop state being called on request is given even by
developers. Thus, reviewing official documentations
is also a way to cope with unforeseen bugs by mobile
testers.

17 F. N. Musthafa#1, S. Mansur2, A. Wibawanto3, O. Qureshi4

July 2021 International Journal on Advances in ICT for Emerging Regions

Figure 2: Basic Android Activity Lifecycle

As we have noticed in our mobile phones, even though

our phone’s screen is off or partially idle state/sleep mode, it
still popups and alerts messages/notification. For instance,
WhatsApp/messenger text messages notification. This entire
process runs in a background called a background
thread/service which is mostly used in Real-Time service
intact application as it can be noticed in figure 3 below, most
top 10 crashed application of 2017 list were those which uses
background threads almost for every task.

Figure 3: Survey results of top 10 crashing apps as given in [18]

In addition to background-running apps, some critical
user conditions to be tested against include:

1.Geographical location.
2.Device and operating systems commonly used in these

geographies.
3.Most-used mobile apps running in the background.
4.Network conditions.
5.Interruptions occurrence while using app (calls,

messages, other popups).

When testers mimic such experiences while testing the
app, the recommended way to assess such application is to
get familiar with the application’s type along with real-time
service providers.

C. Tools and Techniques used in Automated Software
Testing of Mobile Applicationsin Android Platform
Based on recent survey by Stat Counter, Android

operating system is the most popular operating system in the
world [47]. The test input generation tools for mobile
application usually target mobile apps developer with primary
goals to detect existing faults in mobile apps or to maximize
the code coverage. The source code of the app must be open
source in order to allow the tool to do checking, and after
checking is done the mobile apps developer then can catch the
possible errors and fix them. The functional defect is not the
main problem for apps developer because they can do testing
manually, the most important concerns are portability,
malware and energy issues that can be effectively detected by
executing the code.

Most of the time the mobile apps are in the idle state
waiting user input such as clicks, scrolls, or system event,
such as notification, SMS, or GPS location update.
Application also may need input from the users by input
certain value into widget, selecting from a list, and so on.
Because mobile application is event-driven, testing tools will
treat an input from the user as an event or break them into
sequences of event that model user action or model user input.
The sequences of events and the inputs can be generated by
random value or can follow a systematic approach. A
systematic approach, usually the model of the application, is
guided by the process to limit the search space. These models
can be manually, statically or dynamically built.

The capture and replay technique or model-driven
technique are state of the art to manage traditional event-based
system. In the capture and replay technique [3], [4], tester first
do manual testing by recording his interaction with the GUI
then the recording will be replayed during testing automation.
In model-driven technique [58, 41] mobile application model
to be created first before automation testing can be done. Both
techniques require tester involvement, thus may not detect
corner case that human testers are unaware of. Another
technique that does not need manual tester involvement is by
extracting directed graph model from the GUI with crawling
technique like in web development [3,42] test sequences is
produced by those graphs, but still may fail to identify a
system that can be explored with.

The android software development kit is already included
with powerful testing framework [11]. The android testing
framework is an extension of Junit framework with addition
of tool to test specific Android application. The addition is to
address fundamental issue with mobile application

A Scoping Review on Automated Software Testing with Special Reference to Android Based Mobile Application Testing 18

July 2021 International Journal on Advances in ICT for Emerging Regions

development like Android views, Activity, Content Provider,
and specific set of Assertion classes designed for them.

There are many tools available outside of default Android
testing tool. Robotium [52] also build on JUnit framework.
Robotium uses GUI assertions like web application testing
with Selenium framework. The Selenium framework is very
popular and simpler to write tests with and mostly used for
Black-box testing, and is very useful to do functional testing,
system testing, and acceptance testing.

UI Automator [57] does not use JUnit but provides same
functionality for the test engineers to build GUI tests like
clicking buttons, text input, scrolling and swiping. The
Uiautomator has special abilities to check the state of
application before and after user actions in GUI; this can be
useful for Black-box testing of apps through GUI. It also
supports GUI assertions. Monkey Runner [9] has Android
Emulator that can be controlled from outside of Android code.
Monkey Runner can provide screenshots and is very useful
for Regression testing by comparing screenshot with
functional testing. Espreso [12] is the latest Android test
automation framework by Google. It is a more advanced
generation and builds on top of Monkey Runner. It has similar
functionality but is more reliable. The subset of espresso is
Espresso Test Recorder which can record the interaction with
device and do assertion to verify UI element. This recording
can be rerun in the future. Robolectric [52] uses java
reflection API at runtime and use shadow class to test on real
device outside of emulator. This tool also has the ability to run
the test directly accessing Android libraries file with Java
reflection API. It replaces the body of Android API methods
at runtime using java reflection.

The type of mobile app testing techniques and information
on the tools adopting these techniques to test android apps are
summarized as follows.

1. Radom Techniques

Based on the study of Choudhary et al. [17] random testing
technique is the best automated testing for Android app. The
Android Monkey [8], one of the tools they studied, is the best
performance tools available for test input generation tools.

Android has characteristic of event need to be initiated by
user or system event by Android framework itself. Usually
system event can be triggered by specific condition. As a
result of this behaviour random testing is not very efficient.
Most of random testing technique for Android such as [40],
[8], focus on generating only GUI events.

Android Monkey is a part of the Android developer's
toolkit and is widely used by both developers and app market
managers. It uses brute-force mechanism that generate
pseudo-random streams of user event such as clicks, touch,
gestures in a random. It is Monkey that fires off both GUI and
system events based on the number of events that are specified
by the tester and utilizes a completely random strategy [8].

Dynodroid also uses random values and sequences of
events, but it has added few heuristic approaches to improve
Android Monkey’s performance [40]. One of the approaches
is checking android manifest file to generate only relevant
system events for the application. It also keeps the track
histories of the type and number of events used and not
randomly generated next event but uses a least recently used
algorithm. The tester can also manually enter specific values
for specific input text like text boxes to make it least random.

There is also another group of random testing techniques
[54], which focuses on testing inter-application
communications by randomly generating values for Intents
(Intent fuzzing). Intent fuzzers mainly serves the purpose of
generating invalid intents to test application robustness and to
reveal vulnerabilities by generating malicious random
content. Several other approaches are built on random testing
techniques. Amalfitano et al. [4] presentet a GUI crawling-
based approach like in web application testing with Selenium
framework that uses random inputs completely to generate
unique test cases. Hu and Neamtiu [29] describe a random
approach for generating GUI tests that use the Android
Monkey to execute. Random testing techniques are very
efficient to generate events, but it is not suitable for generating
specific input. They also produce redundant events that are
already covered in previous cycles.

2. Model-Based Techniques

Web-based testing application give inspiration for
Android testing. They follow same technique in an event-
based system to systematically generate sequences of events
that resemble the behaviour of the mobile application. The
tools discussed below use static and dynamic analysis
technique to generate machine state by capturing the activities
of the application in the transition of events.

MobiGUITAR [4] builds a model of the application by
dynamically exploring an App GUI with GUI ripping
technique. It builds on top of GUITAR [50]. The model then
is traversed by a depth-first search strategy to generate test
cases. When the tool cannot detect new states during
traversing then it can be restarted. MobiGUITAR also can use
random strategy or tester can manually input constant values
during exploration.

ORBIT [60] analyses the source code and manifests file to
identify relevant UI events. It also statically analyses source
code to identify state transition between activities. This
technique is called grey-box model because it analyses not
only the GUI but also the source code.

While ORBIT uses static analysis SwiftHand [16] uses
dynamic analysis and machine learning to organize state
model of the app during testing. The machine learning is used
to visit unexplored states of the application. The model is
refined dynamically during the execution of the app using the
generated inputs. The main focus of SwiftHand is to optimize
the exploration strategy in order to minimize the restarts of the
app during the exploration.

A3E [13] also uses static analysis technique for building
an app model for automated exploration of an app’s activities.
A depth-first search strategy is used for reaching a certain
state in model. This technique is important for construction of
model testing.

PUMA [27] uses dynamic analysis to build the model. The
goal of this tool is more to provide infrastructure for dynamic
analysis of application. It is built on top of Uiautomator [57].
Instead of reinventing the wheels PUMA uses Monkey’s
exploration strategy but it provides a framework that can be
extended to implement any exploration strategies.

Most of the tools above focus on construction of models
for testing that are covered using a depth-first search strategy
for the generation of event sequences. Model based technique
are useful for complex application that has infinite state and
cannot be explored using random technique.

19 F. N. Musthafa#1, S. Mansur2, A. Wibawanto3, O. Qureshi4

July 2021 International Journal on Advances in ICT for Emerging Regions

3. Record and Reply Techniques

Monkey Recorder [9,10] and RERAN [26] implement
record and replay techniques for Android apps. Monkey
Recoder allows testers to record a script for GUI events of an
application on the device and the recording can be saved and
rerun in the future. As of now Monkey Recorder only collects
click, swipe, and text-input events.

 RERAN, on the other hand, logs the event system com-
mands of the Android operating system to generate low-level
event traces. Because it is low level event it is dependent on
the hardware like screen size and cannot be rerun in other
devices. These scripts are analyzed and turned into runnable
scripts. RERAN replays the recorded script [26].

 Record and replay technique can be useful for stress
testing and regression testing, but the scripts need to be
generated manually. Because of this they are usually biased
towards only certain features and do not capture the behavior
of the app completely. These techniques can only replay what
is recorded and do not consider other combinations of events
for replay.
TABLE II. SUMMARY OF TECHNIQUES WITH THEIR ADVANTAGES
AND DISADVANTAGES AND TOOLS ADOPTING THE TECHNIQUES

Techniqu
e

Advantag
e

Disadvant
age

Tools Refere
nce

Random

Efficiently
generates
events,
Suitable
for stress
testing

Hardly
generates
specific
inputs,
Generate
redundant
events, No
stopping
criterion

Android
Monkey
[8],
Dynodr
oid [40]

[17],[40
],[8],
[54], [4]

Model-
based

More
effective,
Can
reduce
redundant
events

Does not
consider
events that
alter non
GUI state

MAMB
A,
SSDA,
MobiG
UITAR,
Orbit,
SwiftHa
nd,
A3E,
PUMA

[5],[57],
[50],
[60],[27
], [68],
[69]

Record
and
Replay

Useful for
stress and
regression
testing

Test script
are
generated
manually

Monkey
Recorde
r,
RERA
N

[9],[10],
[26],
[67]

D. Challenges in Automated Software Testing on Mobile
Applications

Several studies have been conducted by many researchers,

on the challenges of mobile apps testing and its potential
research possible targets [15]. All their studies come to some
common major challenges they found. Some significant
points noted were (1) Mobile applications are very different
from traditional ones and thus different and specialized
techniques are involved in the testing and (2) there are many
challenges, most still with no optimum solution [37]. For
instance, the randomness of the testing environment greatly
manipulates the reliability, performance, security, and energy.

In the following section, some of the major challenges are
discussed.

1. Device Fragmentation

One of the major challenges of Software Testing is Device
Frag-mentation [32], [4], [19], [32], [45], [1], [14], [33].
Variations in the hardware or O.S. components can cause
mobile applications, while running on different devices, to
behave differently where each application has its own unique
business and data flow [1]. A study reported the existence of
1.800 hardware/O.S. different configurations as of 2012
considering the fact that (as of 2012) there were around 130
different mobile phones operating on Android, 7 versions of
the OS, and presuming two firmware per device [49].

Mobile device fragmentation is a phenomenon that takes
place when older version of an OS runs on a device, while
newer versions are already in existence. There are several
mobile OS available. An app performs differently in different
platforms. A testers goal should be to provide a consistent user
experience across platforms. Using a framework that supports
multiple objects can help as it assists to isolate the
functionality of a specific object, determining whether it
needs an alter for other platforms or not. For instance, if an
app has a selection menu that needs to present as a scrolling
list for Android and a radio-button selection list for Windows
Phone, a testing solution is required that supports multiple
objects, to test both the scenarios [14]. According to Testing
Experience Test devices – Fragmentation can be grouped into
three categories [35]:

Group 1: Small devices having a small CPU, RAM and
low resolution, older software versions and older browsers.

Group 2: Mid-range devices having an average CPU,
RAM (<512 MB), good screen size and resolution, older
software versions.

Group 3: High-end devices having a dual/quad-core CPU,
RAM (>512 MB) and a high screen resolution, latest soft-
ware versions.

Therefore, the following choices adds to the challenges
when testing on varied combinations of devices with right
combination of operating systems: whether to use manual
testing or automated tools, in-house teams or outsourced
partners, guided testing or exploratory testing, emulators and
simulators or remote access [35],[15].

Due to compatibility issues, different user interfaces
increase level of challenge. User’s application experience is
significantly affected by mobile devices network
performance; where multiple network technologies may be
supported by each mobile operator and unfamiliar or local
networking standards may be used by some as well. To test
mobile application in all these probable connected networks,
travelling to every network operator is commanded which can
be very costly and time consuming. Although this network
challenge can be overcome by bypassing the lower layers of
network to test the application via Internet on network by
using device emulator and thus saving time and cost of
travelling, bypassing cannot exactly imitate the effect and
timing of network. Security is another aspect of the
effectiveness and validity of the application; ensuring the
application is secured and does not surpass user’s private and
sensitive data is thus mandatory. Significant hardware
component in addition to its system (for example, GPS,
telemetry, scanners etc.) presents a great challenge and since

A Scoping Review on Automated Software Testing with Special Reference to Android Based Mobile Application Testing 20

July 2021 International Journal on Advances in ICT for Emerging Regions

mobile applications are used by different category of people
stretching from zero IT background to top notch IT, the
usability testing must involve a comprehensive range of
scenarios taking into consideration in their own environments
[47].

2. Connectivity

Apart from the hardware and software issues, the
functionality of an application is also affected by the
performance of carrier’s network. The application is expected
to work with 2G, 3G, 4G or 5G network, Infrared, Bluetooth,
GPS, NFC (Near-Field Communication), WiMAX, low
signal strength and different Wi-Fi speeds [1]. Some
applications are even expected to work the same in no-
network or offline condition as well with synchronization
done [19], [14]. In addition, a single application can also be
expected to sustain in multiple types of connectivity
simultaneously [32]. Slow and fallacious wireless network
connection having low bandwidth is found to be a common
obstacle for mobile applications in many studies [35].
Network latency (time taken to transfer data) will be random
when apps communicate over network boundaries. This
results in unpredictable speeds in data transfer [14]. Gateways
in a wireless network convey content more appropriate for
specific devices while acting as data optimizers. Again, data
optimization process may result in decreased performance for
heavy traffic. Testing should establish the network traffic
level at which the performance of the mobile application is
influenced by gateway capacities [14].

3. Device Limitations

It may be unsuitable in some devices to interpret images
locate elements on the screen resulting from the difference in
display sizes across mobile devices and their various models.
Limitations in processing speed, memory size (RAM,
secondary storage), CPU power, power management
dependencies, battery life dependencies, cumbersome input
UI of mobile devices result in variations of application’s
performance across different types of devices. The display
capability of mobile devices supports much less display
resolution in comparison with desktops. Low resolution can
degrade the quality of multimedia information displayed on
the screen of a mobile device [62]. So, testing must guarantee
that the application has the capacity to deliver optimum
performance and usability for all anticipated configuration of
the hardware and software involved. Mobile devices also have
different application runtimes. Some of the runtimes
commonly available in mobile devices are Binary Runtime
Environment for Wireless (BREW), Java, and embedded
visual basic runtime. Applications should be tested
intensively for the variations particular to runtime only [14].

4. Input Interfaces

To input user data into a mobile application touch screen
is mainly used. However, the device resource utilization
affects the system response time to a touch, and it may
become slow in certain contexts like entry level hardware,
busy processor and so on. To validate the touchscreen
performance under different such contexts (for instance,
resources handlings, load from processor, memory and so on)
and within different mobile devices, testing techniques have
to be created.

Different context contributors may provide inputs to
mobile apps as well, i.e., users, sensors (like noise, light,

motion, image sensors) and connectivity devices (some
examples have been mentioned earlier), inputs that vary from
different as well as changing contexts the mobile device can
step towards. All those devices may supply a combination of
inputs starting from brightness, temperature, altitude, noise
level, type of connectivity, bandwidth to even neighboring
devices that vary, even unpredictably, subject to the
environment and user activities [49],[35]. Validating whether
the app is going to appropriately function on any environment
and given any contextual influence is a conundrum and may
result in combinatorial explosion.

5. Rapid Application Development (RAD)
Methodology

In order to cater to the benefits of faster time to market,
RAD environments are exploited for mobile application
development. Since the introduction of RAD tools reduce the
time taken for development, builds are presented for testing
much earlier. RAD methodology thus enforces an implicit
pressure on testers to reduce the testing cycle time, not
compromising quality and coverage of course [14].

IV. DISCUSSION AND CONCLUSION
 A thorough review of literature has been conducted to

provide detailed discussion on the identified research
questions. The study has given priority for the android
platform to discuss certain points like tools and techniques.
This has been done to specifically mention few points with
example as there a number of mobile platforms in use these
days and android is considerably one of the popular one.
Though the reference is on android platform, the challenges
and importance of mobile application testing when
performing automated testing, as discussed under the A and
D subsections of the third section is common to all the mobile
application and certain points in the B and C subsections can
also be taken into consideration for other platforms too. As
the main idea behind this study was the target on the
practitioners of automated testing, this study would definitely
be useful for them to gain certain knowledge on the topic and
the researchers in this field too would be benefited from the
findings of this study. As of that, the authors wish to
summarize the following to the practitioners of the automated
software testing on mobile applications as the best practice to
be adopted and these facts are based on the literature review
carried out for this study.

Literature reveals that all the software testing techniques
involve in ensuring a quality product, before the
implementation of any such technique to evaluate a software
product, the particular approach must be well studied as it
may be the ideal approach for the testing process. Based on
the way the testing process is carried out, testing is classified
as automation and manual. Although the potential benefits of
using automation techniques are higher compared to manual
testing, it is always advisable to look in to when and what to
auto-mate and whether the particular approach can well
define the needs. Although from low scale to high-end scale
business have adapted mobile as a source to accomplish their
daily tasks professionally. But, today the
enterprises/businesses are more concerned with application
that scales automatically as per the data grow along with high
availability of access across the globe. Its functionality,
usability, and consistency, these all characteristics can be
evaluated, by performing automation or manual testing for

21 F. N. Musthafa#1, S. Mansur2, A. Wibawanto3, O. Qureshi4

July 2021 International Journal on Advances in ICT for Emerging Regions

high quality of application, end-to-end testing is also very
important to ensure application downloadable effectively,
works seamlessly, and no lag during screens transitive which
makes mobile application testing different from other
platforms but complex and lengthy for testers due its
complex lifecycle and detailed process and understanding of
back-ground threads and so. At the initial phase, practitioners
could commence the automation testing using tool like
Monkey because it is already included in standard Android
developer toolkit and does not need any additional
requirements. Monkey is also very popular and has support
from Google, the owner of Android. No single strategy alone
seems to be effective enough to cover all behaviors; a
combination is more effective. Random technique can be
used for stress testing, record and replay is suitable for
regression testing, and for application that is complex and has
many UI activities model-based can be considered. In terms
of challenges as we can see challenges in mobile application
are huge in number and complex in nature, it is either
required to plan a test strategy that is mobile-specific, or else
we may over-look crucial areas of testing like how network
connectivity (or lack thereof) distresses an application, how
screen resolution and orientation changes could spoil a user’s
whole experience, and whether our application accomplishes
what users of a particular device have come to expect, or, we
may opt for something like what Google, the big blue chip,
is researching on, which is, modular phones. As an effort to
come up with an approach that amalgamates most benefits of
the other approaches, Google endeavors to introduce new
modular phone. A modular phone with working user-
interchangeable components can let the users to upgrade their
mobile easily and efficiently as all main components are
interchangeable via modules that click in and out; this can
facilitate testing process as well.

Apart from the best practices suggested for the

practitioners, the researchers in the field would be suggested
for using this study for any domain specific research related
to this field as the study gives detail specifications under the
topics discussed. As the authors take this as the starting point
for further research to be carried out on the compound testing
strategies ideal for automated software testing for mobile
application, the future research on this study could be
expanded based on the software testing phases where
automation can be implemented while automating the whole
procedure of software testing too. Apart from this, the
researchers in this field could also investigate the challenges
specific to mobile application testing and whether it could be
mitigated with automated tools. Also, as this scoping review
mainly refer to the android platform, future studies are also
encouraged on other platforms.

ACKNOWLEDGMENT
The authors of this paper work take this opportunity to

thank all those from the Department of Software Engineering,
University of Malaya, Malaysia who helped throughout this
research work. The authors also complement and
acknowledge the reviewers and the panel of the ICTer2020
conference for suggestions and ideas for improvements as the
concept of this paper was presented as a poster at the ICTer
2020, Colombo, Sri Lanka.

REFERENCES

[1] Akour M., Ahmed A., Falah B., Bouriat S., Alemerien K. (2016),
“Mobile Software Testing: Thoughts, Strategies, Challenges, and
Experimental Study”, Vol. 7, No. 6, 2016.

[2] Kitchenham, B., Pretorius, R., Budgen, D., Pearl Brereton, O., Turner,
M., Niazi, M., & Linkman, S. (2010). Systematic literature reviews in
software engineering – A tertiary study. Information And Software
Technology, 52(8), 792-805. doi: 10.1016/j.infsof.2010.03.006

[3] Amalfitano D., Fasolino A., and Tramontana P. (2011), "A GUI
crawling-based technique for android mobile application testing".
Software Testing, Verification and Validation Workshops (ICSTW),
2011 IEEE Fourth International Conference on, March 2011, pp. 252–
261.

[4] Amalfitano D., Fasolino A. R., Tramontana P., De Carmine S., and
Memon A. M. (2012), "Using GUI ripping for automated testing of
android applications". Proceedings of the 27th IEEE/ACM
International Conference on Automated Software Engineering, ser.
ASE 2012. Essen, Germany: ACM, 2012, pp. 258–261.

[5] Amalfitano D., Fasolino A., Tramontana P., Ta B., and Memon A.
(2014), "Mobiguitar–a tool for automated model-based testing of
mobile apps". 2014.

[6] Ammann P.,and Offutt J. (2008), “Introduction to Software Testing”.
Cambridge University Press The Edinburgh Building, Cambridge CB2
8RU, UK, Published in the United States of America by Cambridge
University Press, New York, page: 10

[7] Anand S., Naik M., Harrold M. J., and Yang H. (2012), "Automated
concolic testing of smart-phone apps". Proceedings of the ACM
SIGSOFT 20th International Symposium on the Foundations of
Software Engineering, ser. FSE ’12. Cary, North Carolina: ACM,
2012, pp. 59:1–59:11.

[8] Android Monkey. Retrieved on 5 January 2020, from:
https://developer.android.com/studio/test/monkey

[9] Android Monkey Runner. Retrieved on 5 January 2020, from:
https://developer.android.com/studio/test/monkeyrunner.

[10] Monker Recorder. Retrieved on 06 January 2020, from :
https://developer.android.com/studio/test/monkeyrunner.

[11] Android Testing Framework. Retrieved on 5 January 2020, from:
http://developer.android.com/guide/topics/testing/index.html.

[12] “Espreso”. Retrieved on 7 January 2020, from
https://developer.android.com/training/testing/espresso.

[13] Azim T. and Neamtiu I. (2013), "Targeted and depth-first exploration
for systematic testing of Android apps". Proceedings of the 2013 ACM
SIGPLAN International Conference on Object Oriented Programming
Systems Languages and Applications, ser. OOPSLA ’13. Indianapolis,
Indiana, USA: ACM, 2013, pp. 641–660.

[14] Baride S., Dutta K. (2011), “A cloud based software testing paradigm
for mobile applications”, ACM SIGSOFT Software Engineering notes,
Vol. 36, No.3, May 2011. DOI: 10.1145/1968587.1968601

[15] Bhuarya P., Nupur S., Chatterjee A. and Thakur R.S. (2016), “Mobile
application testing: tools and challenges”, International Journal of
Engineering And Computer Science ISSN: 2319-7242, Volume 5 Issue
10, Oct. 2016, pp. 18679-18681. DOI: 10.18535/ijecs/v5i10.57

[16] Choi W., Necula G., and Sen K. (2013), “Guided gui testing of android
apps with minimal restart and approximate learning”. Proceedings of
the 2013 ACM SIGPLAN International Conference on Object
Oriented Programming Systems Languages and Applications, ser.
OOPSLA ’13. Indianapolis, Indiana, USA: ACM, 2013, pp. 623–640.

[17] Choudhary S. R., Gorla A. and Orso A. (2015), "Automated test input
generation for : are we there yet". To appear at the 30th International
Conference on Automated Software Engineering, ser. ASE ’15, 2015.

[18] Dilger E. D, (March 13, 2018), The mystery of crashing apps on iOS
and Android. Retrieved on 11 April 2020 from:
https://appleinsider.com/articles/18/03/13/the-mystery-of-crashing-
apps-on-ios-and-android

[19] De Souza, L. S. and De Aquino, G. S. (2014), “Mobile application
development: how to estimate the effort?”, B. Murgante et al. (Eds.):
ICCSA 2014, Part V, LNCS 8583, pp. 63–72, 2014. Springer
International Publishing Switzerland 2014.

[20] Elliott D, (Mar 9, 2018), “A guide to the Google Play Console”
Retrieved on 5 March 2020, from:

A Scoping Review on Automated Software Testing with Special Reference to Android Based Mobile Application Testing
 10

July 2021 International Journal on Advances in ICT for Emerging Regions

https://medium.com/googleplaydev/a-guide-to-the-google-play-
console-1bdc79ca956f.

[21] Espresso, Retrieved on 4 March 2020, from:
https://google.github.io/android-testing-support-
library/docs/espresso/index.html.

[22] Enge E., (April 11, 2019), Mobile vs Desktop Traffic in 2019,
Retrieved from https://www.stonetemple.com/mobile-vs-desktop-
usage-study/.

[23] Gao, J., Bai, X., Tsai, W. T., and Uehara, T. (2014). Mobile application
testing: A tutorial. Computer. https://doi.org/10.1109/MC.2013.445

[24] Garousi, V., and Mäntylä, M. V. (2016). “When and what to automate
in software testing? A multi-vocal literature review”. Information and
Software Technology, 76(April), 92–117.
https://doi.org/10.1016/j.infsof.2016.04.015

[25] Garousi, V., and Zhi, J. (2013). “A survey of software testing practices
in Canada”. Journal of Systems and Software.
https://doi.org/10.1016/j.jss.2012.12.051

[26] Gomez L., Neamtiu I., Azim T., and Millstein T. (2013), "Reran:
Timing-and touch-sensitive record and replay for Android". Software
Engineering (ICSE), 2013 35th International Conference on. IEEE,
2013, pp. 72–81.

[27] Hao S., Liu B., Nath S., Halfond W. G., and Govindan R. (2014),
"Puma: programmable ui-automation for large-scale dynamic analysis
of mobile apps". Proceedings of the 12th Annual International
Conference on Mobile Systems, Applications, and Services, ser.
MobiSys ’14. Bretton Woods, New Hampshire, USA: ACM, 2014, pp.
204–217.

[28] Hooda, I., and Singh Chhillar, R. (2015). “Software Test Process,
Testing Types and Techniques”. International Journal of Computer
Applications, 111(13), 10–14. https://doi.org/10.5120/19597-1433.

[29] Hu C. and Neamtiu I. (2011), "Automating GUI testing for Android
applications". Proceedings of the 6th International Workshop on
Automation of Software Test, ser. AST ’11. Waikiki, Honolulu, HI,
USA: ACM, 2011, pp. 77–83.

[30] Jensen C. S., Prasad M. R., and Møller A. (2013), "Automated testing
with targeted event sequence generation". Proceedings of the 2013
International Symposium on Software Testing and Analysis, ser.
ISSTA 2013. Lugano, Switzerland: ACM, 2013, pp. 67–77.

[31] Jorgensen P,C.. (2014). “Software Testing A Craftsman’s Approach”.
Guest Editors Introduction, IEEE Computer (Vol. 47). DOI:
10.1109/TEST.1991.519785.

[32] Joorabchi M. E., Mesbah A. and Kruchten P. (2013), “Real Challenges
in Mobile App Development,” IEEE International Symposium.,
Baltimore MD. 2013, pp. 15-24. DOI: 10.1109/ESEM.2013.9.

[33] Kaur A. (2015), “Review of mobile applications testing with
automated techniques”, International Journal of Advanced Research in
Computer and Communication Engineering Vol. 4, Issue 10, October
2015. DOI: 10.17148/IJARCCE.2015.410114.

[34] Kaur A. and Kaur K. (2018), “Systematic literature review of mobile
application development and testing effort estimation”, J. King Saud
Univ. - Comput. Inf. Sci..

[35] Kirubakaran B., Karthikeyani V. (2013), "Mobile application testing—
Challenges and solution approach through automation", Proc. IEEE
Int. Conf. Pattern Recognit. Inform. Mobile Eng., pp. 79-84.

[36] Kochhar, P. S., Thung, F., Nagappan, N., Zimmermann, T., and Lo, D.
(2015). “Understanding the test automation culture of app developers”.
IEEE 8th International Conference on Software Testing, Verification
and Validation, ICST 2015 - Proceedings, April 13–17.
https://doi.org/10.1109/ICST.2015.7102609

[37] Kong P., Li L., Gao, J., Liu, K., Bissyande T. F., and Klein J. (n.d.),
“Automated testing of android apps: A systematic literature review”.

[38] Lee G., (November 23, 2014), “iOS > Android: View Life Cycle,
Retrieved from http://gregliest.github.io/mobile/view-controller-
lifecycle/"

[39] Li, Y. F., Das, P. K., and Dowe, D. L. (2014). Two decades of Web
application testing - A survey of recent advances. Information
Systems, 43, 20–54. DOI: 10.1016/j.is.2014.02.001.

[40] Machiry A., Tahiliani R., and Naik M., "Dynodroid: An input
generation system for Android apps". Proceedings of the 2013 9th Joint
Meeting on Foundations of Software Engineering, ser. ESEC/FSE
2013. Saint Petersburg, Russia: ACM, 2013, pp. 224–234.

[41] Mahmood R., Mirzaei N., and Malek S. (2014), "Evodroid: Segmented
evolutionary testing of Android apps". Proceedings of the 2014 ACM

SIGSOFT International Symposium on Foundations of Software
Engineering, ser. FSE ’14. Hong Kong, China: ACM, November 2014.

[42] Mehlitz P., Tkachuk O., and Ujma M. (2011), "Jpf-awt: Model
checking GUI applications". Proceedings of the 2011 26th IEEE/ACM
International Conference on Automated Software Engineering, ser.
ASE ’11. Washington, DC, USA: IEEE Computer Society, 2011, pp.
584–587.

[43] Memon A., Banerjee I., and Nagarajan A. (2003), "Gui ripping: reverse
engineering of graphical user interfaces for testing". Proceedings of the
10th Working Conference on Reverse Engineering, ser. WCRE ’03.
Washington, DC, USA: IEEE Computer Society, 2003, pp. 260–.

[44] Memon A. M., Pollack M. E., and Soa M. L. (2000), "Automated test
oracles for GUIs". Proceedings of the 8th ACM SIGSOFT
International Symposium on Foundations of Software Engineering:
Twenty-first Century Applications, ser. SIGSOFT ’00/FSE-8. San
Diego, California, USA: ACM, 2000, pp. 30–39.

[45] Méndez-Porras A., Quesada-López C. and Jenkins M. (2015),
“Automated testing of mobile applications: A systematic map and
review”, Conference Paper, April 2015.

[46] Monkeyrunner. Retrieved on 11 March 2019, from:
http://developer.android.com/tools/help/monkeyrunnerconcepts.html.

[47] Mohammed Z., Shamlan A., HazeerA., Rizny A. (n.d.), "Challenges in
Mobile Application Testing in the context of Sri Lanka".

[48] Most Popular Operating System. Retrieved on 17 March 2019, from:
http://gs.statcounter.com/os-market-share.

[49] Muccini, H., Francesco, A., and Esposito, P. (2012), "Software testing
of mobile applications: Challenges and future research directions",
Proc. 7th Int. Workshop Autom. Softw. Test, AST 2012, Zurich,
Switzerland), IEEE, pp. 29-35.

[50] Nguyen B. N., Robbins B., Banerjee I., and Memon A. (2014), "Guitar:
an innovative tool for automated testing of GUI-driven software".
Automated Software Engineering, vol. 21, no. 1, pp. 65–105, 2014.

[51] Orso, A., and Rothermel, G. (2014). Software testing: a research
travelogue (2000–2014), 117–132.
https://doi.org/10.1145/2593882.2593885

[52] Robolectric. Retrieved on 4 March 2019, from:
http://pivotal.github.com/robolectric/.

[53] Robotium. Retrieved on 15 March 2019, from:
http://code.google.com/p/robotium/.

[54] Sasnauskas R. and Regehr J. (2014), "Intent fuzzer: crafting intents of
death". Proceedings of the 2014 Joint International Workshop on
Dynamic Analysis (WODA) and Software and System Performance
Testing, Debugging, and Analytics (PERTEA). ACM, 2014, pp. 1–5.

[55] Segue Technologies (April 15, 2015), Why is Mobile Application
Testing Important? Retrieved on 5 March 2019, from:
https://www.seguetech.com/why-mobile-application-testing-
important/.

[56] StackOverflow (2015), Retrieved on 8 March 2019, from:
https://stackoverflow.com/questions/28969032/what-the-equivalent-
of-activity-life-cycle-in-ios.

[57] Thu E. E., Aung T. N., (August 2015), “Developing mobile application
framework by using RESTFuL web service with JSON parser”,
Genetic and Evolutionary Computing: Proceedings of the Ninth
International Conference on Genetic and Evolutionary Computing,
August 26-28, 2015, Yangon, Myanmar - Volume II.

[58] Ui Automator. Retrieved on 14 March 2020, from:
http://developer.android.com/tools/testing-support-library/index.html.

[59] White L. and Almezen H. (2000), "Generating test cases for GUI
responsibilities using complete interaction sequences". Software
Reliability Engineering, 2000. ISSRE 2000. Proceedings. 11th
International Symposium on, 2000, pp. 110–121.

[60] Yang W., Prasad M. R., and Xie T., "A grey-box approach for
automated gui-model generation of mobile applications". Proceedings
of the 16th International Conference on Fundamental Approaches to
Software Engineering, ser. FASE’13. Rome, Italy:Springer-Verlag,
2013, pp. 250–265.

[61] Zaeem, R. N., Prasad, M. R.,and Khurshid, S. (2014). Automated
generation of oracles for testing user-interaction features of mobile
apps. Proceedings - IEEE 7th International Conference on Software
Testing, Verification and Validation, ICST 2014, 183–192.
https://doi.org/10.1109/ICST.2014.31

[62] Zhang, D. and Adipat, B. (2005), “Challenges, methodologies, and
issues in the usability testing of mobile applications”,
INTERNATIONAL JOURNAL OF HUMAN–COMPUTER

23 F. N. Musthafa#1, S. Mansur2, A. Wibawanto3, O. Qureshi4

July 2021 International Journal on Advances in ICT for Emerging Regions

INTERACTION, 18(3), 293–308 Copyright © 2005, Lawrence
Erlbaum Associates, Inc. DOI: 10.1207/s15327590ijhc1803_3.

[63] Franke, D., Elsemann, C., Kowalewski S., and Weise, C. (2011).
“Reverse Engineering of Mobile Application Lifecycles”. 18th
Working Conference on Reverse Engineering.

[64] 63. L. Malisa, K. Kostiainen, M. Och, and S. Capkun, “Mobile
application impersonation detection using dynamic user interface
extraction,” in Proceedings of the Eur. Symp. Res. Comput. Secur.,
2016, pp. 217–237.

[65] 64. J. C. J. Keng, L. Jiang, T. K. Wee, and R. K. Balan, “Graph-aided
directed

[66] Testing of Android applications for checking runtime privacy
behaviours”. Proceedings of the IEEE 11th Int. Workshop Automat.
Softw. Test, 2016, pp. 57–63.

[67] L. Clapp, O. Bastani, S. Anand, and A. Aiken, “Minimizing GUI event
traces”. Proceedings of the ACM SIGSOFT Int. Symp. Found. Softw.
Eng., 2016, pp. 422–434.

[68] Y.-M. Baek and D.-H. Bae, “Automated model-based Android GUI
testing using multi-level GUI comparison criteria”. Proceeding of the
Int. Conf. Automated Softw. Eng., 2016, pp. 238–249

[69] H. Zhang, H. Wu, and A. Rountev, “Automated test generation for
detection of leaks in Android applications”. in Proceeding of IEEE
11th Int. Workshop on Automat. Softw. Test, 2016, pp. 64–70.

[70] Z. Qin, Y. Tang, E. Novak, and Q. Li, “MobiPlay: A remote execution
based record-and-replay tool for mobile applications”. Proceeding of
IEEE/ACM 38th Int. Conf. Softw. Eng., 2016, pp. 571–582

[71] K. Moran, M. Linares-Vásquez, C. Bernal-Cárdenas, C. Vendome and
D. Poshyvanyk, "Automatically Discovering, Reporting and
Reproducing Android Application Crashes," 2016 IEEE International
Conference on Software Testing, Verification and Validation (ICST),
Chicago, IL, 2016, pp. 33-44, doi: 10.1109/ICST.2016.34.

	I. Introduction
	II. RESEARCH METHOD
	A. Research Questions
	B. Search Strategy
	The search for study was conducted in the electronic search space. Electronic databases were explored with the target of research questions based on key word search approach. To identify the suitable literature, inclusion and exclusion criteria was us...
	C. Information Sources
	Popular scientific databases were chosen to conduct the electronic search and retrieve the relevant literature for this review. The databases include IEEE Xplore, ACM digital library and ScienceDirect. Additional records were also found via google sch...
	D. Search Terms
	The scope of the study being little broader without fixed taxonomy, a range of search strings were used as keywords across the electronic search space. The keywords defined were used with Boolean combinations such as “and” and “or” with the aim of min...
	E. Inclusion and exclusion criteria

	III. Literature review and key findings
	A. Software Test Automation
	B. Importance of Automated Mobile Application Testing
	C. Tools and Techniques used in Automated Software Testing of Mobile Applicationsin Android Platform
	D. Challenges in Automated Software Testing on Mobile Applications

	IV. DISCUSSION AND CONCLUSION
	Acknowledgment
	References

