
International Journal on Advances in ICT for Emerging Regions 2021 14(2):

March 2021 International Journal on Advances in ICT for Emerging Regions

User-Controlled Subflow Selection in MPTCP: A
Case Study

Kshithija Liyanage1*, Tharindu Wijethilake#2*, Kasun Gunawardana3*, Kenneth Thilakarathne4*, Primal Wijesekera5Ϯ, Chamath Keppitiyagama6*

Abstract— It is common to find multiple network interfaces
connected to different Internet Service Providers (ISPs) in
devices such as smartphones. Multipath TCP (MPTCP) enables
TCP connections to use all these network interfaces in a single
TCP connection in an application transparent manner.
MPTCP schedules traffic of one TCP connection over subflows
created over these network interfaces. It is evident that this
requires some scheduling policy. There have been some
attempts to allow applications to decide on the scheduling
policy. However, this violates the application transparency of
MPTCP, and applications do not have all the information
required to decide on such a policy. In addition, this allows the
applications to monopolize the network connection thus posing
a security threat as well.
We argue that only the owner of the device (the user) has the
right to make that policy decision and only the user can make
an informed decision on the scheduling policy. For example, the
user has the information on the monetary cost of the
connections through different interfaces.
In this paper we present a mechanism that allows the user to
provide hints to the TCP scheduler to alter its scheduling
policy. While this is not a mechanism to implement generic
scheduling policies, it demonstrates how a user can guide the
scheduling policies. As a proof of the concept, we demonstrate
how MPTCP scheduler can be influenced to select a less stable
and lossy path over a stable path based on a user preference.

Keywords— Multipath TCP, MPTCP Subflow, MPTCP
Scheduler

I. INTRODUCTION
onsider a smartphone with two network interfaces;
cellular and WiFi. This device is multihomed - i.e it is

connected to the Internet through two different ISPs via the
two network interfaces. It has the potential to reach a
destination via the two ISPs utilizing the two network
interfaces thus increasing the available bandwidth and the
path redundancy.

Despite having multiple interfaces and network
connections, communication of a particular application may
be limited to a single network interface or connection due to
the limitations imposed by underlying communication
protocols and their implementations. For example, a TCP

connection opened by an application can use only a single
endpoint since a TCP connection is tied to a single IP
address at one end.

There is a number of techniques to overcome these
limitations and reap benefits of having multiple network
interfaces. For example, assume that a device with two
network interfaces. In such a device, it is possible for an
application to be aware of both the interfaces and open two
TCP connections to a destination through those interfaces.
The application itself can schedule traffic over these two
connections according to a policy. However, such a solution
is neither scalable nor portable.

Link aggregation or channel bonding can be used to
increase the bandwidth of a particular communication [1].
Channel bonding/aggregation techniques combine several
network interfaces/connections in order to increase the
bandwidth where the implementation may be through
hardware, software or both. The traffic division of channel
bonding will happen at the network layer or data link layer
with respect to the OSI model, depending on the
implementation i.e. if it is an Ethernet connection, the switch
and the operating system of the host machine have to be
configured to use channel bonding. However, in the above
mentioned scenario channel bonding does not provide a
solution. Since the interfaces are connected to two different
ISPs it is impossible to bond the two interfaces at network or
data link layers. Therefore, there have been a number of
attempts in finding a solution at the transport layer and
consequently MPTCP has been introduced[4].

Transport Layer Protocol (TCP) is confined to a single
network interface in traditional TCP/IP implementation.
However, MPTCP supports establishing TCP connections
over multiple network interfaces. It is an extension that has
been proposed by IETF to enable the Transport layer to
utilize multiple network interfaces available in a device and
improve the reliability of communication for its applications
by enabling multiple redundant paths [4]. Moreover, the
proposed extension also maintains the abstraction provided
by the transport layer to the upper layers/applications
through a mechanism that aggregates multiple TCP
connections. Therefore, applications are not aware of
multiple TCP connections. Thus applications need no
modifications to use MPTCP.

Currently MPTCP is available for Linux operating
systems which should be installed and configured
deliberately. Apple iOS uses MPTCP for their voice
assistant ‘Siri’[17]. Apple iOS is claimed to be the first
mobile operating system which implements MPTCP [18].
Further, Apple states that if an application needs to use its
MPTCP, then the application needs to be written in support
of using MPTCP [19] which implies that the particular
application on Apple mobile platform is aware of MPTCP.
i.e. Transport layer protocols are made visible at the
application layer to a certain extent to have a better control
over MPTCP in catering specific application requirements.

C

Correspondence: T. Wijethilak#2 (E-mail: tnb@ucsc.cmb.ac.lk)
Received: 14-01-2-2021 Revised:16-03-2021 Accepted: 17-03-2021

This paper is an extended version of the paper “Priority Based Subflow
Selection in MPTCP: A Case Study” presented at the ICTer 2020
conference.

K. Liyanage1*, T. Wijethilake#2*, K. Gunawardana3*, K.Thilakarathne4*,
and C. Keppitiyagama6* are from University of Colombo School of
Computing (UCSC). (kshithijal@gmail.com, tnb@ucsc.cmb.ac.lk,
kgg@ucsc.cmb.ac.lk, kmt@ucsc.cmb.ac.lk, chamath@ucsc.cmb.ac.lk)

P. Wijesekera5Ϯ is from University of California, Berkeley &
International Computer Science Institute, USA.
(primal@cs.berkeley.edu)

DOI: http://doi.org/10.4038/icter.v14i2.7225

	

User-Controlled Subflow Selection in MPTCP: A Case Study 2

International Journal on Advances in ICT for Emerging Regions March 2021

The emergence of MPTCP inclines the Transport layer’s

involvement in end-to-end routing decisions by allowing it
to have one or more communication paths, subflows.
However, MPTCP has to make these decisions based on the
information available for traditional TCP. This makes a
proclivity for MPTCP to select more stable communication
paths, resulting from inheriting TCP design, despite having
more viable alternative paths with a less opportunistic cost.
We believe that enabling/assisting such decision-making
ability at the Transport layer would help MPTCP attain its
objectives.

We envisioned the benefits of users being able to take
part in decision making with respect to the MPTCP path
selection by providing their preference. We make a clear
distinction between the user and applications. In this work
user refers to the person who owns or controls the device
and uses the applications. For example, in a circumstance
where an ad-hoc network and a 4G mobile data connection
are available for the user to communicate, the user would
have chosen to connect through the ad-hoc network if the
user is more concerned about the cost rather than the delay
in communication. Only the user, not the individual
applications on the device, has the information to make such
a decision. Hence it is crucial to get user input in scheduling
traffic over multiple network interfaces. However, current
GNU/Linux MPTCP implementation does not have
provisions for such information propagation from user to the
MPTCP scheduler in the kernel.

Wijethilake et al. [8] and Neira-Ayuso et al. [7] discuss
techniques of passing information from user space to kernel
space by modifying the socket implementation which
requires modification to the existing applications.

However, we believe that the user should be involved in
the path selection decision where applications should not be
affected by the changes made at the lower layers of the
network stack. Therefore, an alternative way of passing a
user provided hint from the user space to the kernel space,
bypassing the application, was studied by Liyanage et al.
[25]. In this study, we further explore that approach and, a
novel MPTCP scheduling algorithm that takes user hints to
decide and prioritize subflows.

II. BACKGROUND
Mobile device usage has been continuously growing and,

as of the year 2019, there were 4.68 billion [4] mobile users
around the globe. Nowadays, most mobile devices are
equipped with multiple communication interfaces, such as
WiFi, Cellular, and Bluetooth. Generally, WiFi
communication is cheaper than Cellular communication.
Due to mobile devices' widespread usage, building an Ad-
hoc network and establishing a communication path is
possible. Using an Ad-hoc network can make
communication more cost-effective, evading expensive
communication via ISPs. However, this introduces several
challenges, such as prioritizing network packets' flow
through the Ad-hoc connection by using the MPTCP and
giving the authority to choose when to prioritize the Ad-hoc
connection to the user's mobile device. Thus, this study aims
to combine the infrastructure and Ad-hoc network
connections to prioritize the flow of network packets
through the Ad-hoc network and obtain the user's hint in
deciding when to prioritize the Ad-hoc connection.

A. Multipath TCP
MPTCP uses a TCP subflow per interface to establish an

MPTCP connection between two hosts. The individual
MPTCP subflows work as independent TCP connections by
maintaining their own data structures to attain the reliability
of TCP. MPTCP maintains additional data synchronization
mechanisms to integrate data pertaining to a particular
MPTCP connection that may be received out of order from
multiple subflows [4].

In order to create a MPTCP communication, both the
hosts must be configured with MPTCP. Otherwise it will use
the traditional TCP for the communication. When
establishing MPTCP connections over two hosts, it first
initiates the connection via one of the available network
interfaces. It is called as the first subflow in the context of
MPTCP terminology. If both the hosts are compatible with
MPTCP, the hosts can initiate another subflow via a second
network interface available in the device. As an example, a
mobile phone that has two network interfaces (i.e. WiFi
interface and a Cellular interface) can initiate the first
subflow using the WiFi interface when it establishes
MPTCP connection with a server. This connection will
examine whether both the devices are compatible with
MPTCP. If the mobile phone and the server both are
compatible, it will initiate the second subflow via the
cellular interface. A client application running on the mobile
phone will assume a single network connection. But
underneath it has two different TCP connections via two
network interfaces which probably operate over two
different ISPs as shown in Figure 1.

Fig. 1 Mobile phone connecting to a server using MPTCP via two ISPs

A vital attribute of MPTCP is its backward compatibility.

If one of the hosts of MPTCP connection is incompatible
with MPTCP, it will downgrade the connection to traditional
TCP. Even though MPTCP achieves this level of flexibility,
it does not change the existing headers of traditional TCP.
Therefore, to communicate the control signals related to
MPTCP, it uses the ‘Options’ field of the TCP header
segment. One of the challenges faced when using MPTCP in
practice is that the MPTCP traffic could get dropped in the
middle, such as a Firewall or Intrusion Prevention
System, if those are not aware of MPTCP.

When initiating the connection between two hosts using
the MPTCP, it used the same three-way handshake used as
traditional TCP. It will send SYN, SYN/ACK and ACK
messages to and from the hosts and establish the connection.
However, to negotiate the MPTCP communication, it uses
the set of MPTCP options. The MPTCP options will reside
inside the “Options” field of the TCP header sections and
exchanged in the initial three-way handshake. In the first

3 K. Liyanage1*, T. Wijethilake#2*, K. Gunawardana3*, K.Thilakarathne4*, P. Wijesekera5Ϯ, C. Keppitiyagama6*

March 2021 International Journal on Advances in ICT for Emerging Regions

sub-flow, MPTCP will send the MP_CAPABLE option
within the SYN message to the host which it intends to
communicate with (Figure 2). When this message is received
at the recipient and if the recipient is configured with
MPTCP, it will reply to the message with SYN/ACK
message including the MP_CAPABLE. If not it will reply to
the SYN without including the MP_CAPABLE option. If the
reply contains the MP_CAPABLE option, the initiator will
recognize that the recipient is also compatible with
MPTCP. When the reply contains the traditional TCP
SYN/ACK without MP_CAPABLE option, it implies that
the recipient is not configured with MPTCP. With the
MP_CAPABLE option, MPTCP will negotiate a set of keys
which will be used to authenticate the next subflows it will
generate.

After establishing the first subflow, MPTCP will use
other network interfaces to create the consecutive subflows.
Again the TCP three-way handshake will happen, but with
the MP_JOIN option included in the TCP “Options” field.
MP_JOIN will use the keys negotiated in the first subflow
using MP_CAPABLE to authenticate the newly created
subflow with the destination host. If the host agrees to create
the next subflow it will reply to the SYN message with the
MP_JOIN options with the key materials to confirm the
connection. This mechanism is used to join any number of
subflows to the MPTCP connection.

Fig. 2 MPTCP three-way handshake which uses MP_CAPABLE option in

the first subflow and MP_JOIN option in the next subflow.

MPTCP uses two methods in scheduling packets at the
initial stage of its connectivity 1. all the network packets are
duplicated among the available subflows to improve
redundancy. 2. segment and schedule the packets to the
subflows in the round-robin method to improve overall
performance and bandwidth [20]. However, further studies
present more advanced schedulers and congestion
controlling mechanisms for MPTCP [21]. Though the
schedulers and congestion control mechanisms currently
available in GNU/Linux systems, MPTCP schedules the
packets to the subflows without any user or application

intervention and is purely based on the information available
through regular congestion control implementations at
transport layer with respect to each subflow.

On the other hand, Frömmgen et al. and others, have
shown the limitations of current schedulers of MPTCP and
they suggested having an application aware MPTCP
scheduler, which ultimately gives MPTCP more benefits
than the throughput optimization [16]. The study
further mentions that the applications might have different
preferences or requirements, not only the throughput. For
such cases, they have introduced a programming model
which can be used to create and deploy, application and
preference aware schedulers for MPTCP. However, in our
study, we argued that, as the primary stakeholder of the
system, the ability to make the decision about the path
selection and scheduling has to be with the user of the
particular device, which we consider as the user policy,
rather than the application.

Most of the users who use devices are not technically
capable of creating their own schedules or configuring the
pluggable schedulers by using sysctl commands. Therefore
when it comes to the end user, it has to be more user friendly
for the end users of the devices to select or configure their
user policy. For example, an user interface with a toggle to
priorities the subflow which is connected to a particular
service provider that may provide higher bandwidth or less
charges.

Therefore, we believe that it is prudent to base the
decision on prioritizing or selecting a communication path
via a particular interface on a user policy and the information
that the transport layer can discover/learn. As mentioned
earlier, the user policy may be a composition of different
factors such as risk, opportunistic monetary cost, throughput,
and some other affinity towards a particular path. Further,
these factors may be computed or taken directly as an input
from the user because, in any information system, the user
plays a vital role as a stakeholder. However, existing TCP/IP
specification does not have provisions to capture such
information or propagate such information to the Transport
layer. Further, making such enhancement to the protocol
without compromising existing systems and applications
would be a challenging task.

In one of the early works, Wijesekera et al. suggested
COMONet as a user transparent way of switching a
conventional call between a costly mobile provider or a free
community-driven ad-hoc network [3]. The switching
between connections occurs at the application layer.
However, MPTCP provides a less costly way to switch at the
kernel level.

Use of heterogeneous paths (subflows) with MPTCP
made researchers explore finding the optimal path based on
its network performance. Thus, ample research has been
conducted on finding the optimal path based on the path
attributes [12][14]. Further, a number of researches have
been carried out to discover application/context aware path
selection [11] [13]. Despite these findings, we believe that
the user’s preference is also a vital factor in deciding the
path, as the user possesses additional knowledge such as
cost-effectiveness, reliability, etc. which is unavailable and
not considered for current MPTCP path selection.

User-Controlled Subflow Selection in MPTCP: A Case Study 4

International Journal on Advances in ICT for Emerging Regions March 2021

B. MPTCP Scheduler
Selection of a subflow and segmentation/integration of

data into/from multiple subflows is done by MPTCP
scheduler (Figure 3). The availability of the subflows for
selection is provided by the path management component of
the MPTCP. The MPTCP scheduler considers a number of
factors such as, the TCP subflows’ state (active or not), the
congestion window of the subflow, the round trip time (RTT)
estimation, etc. In making the subflow selection decision. A
combination of these factors is considered as a subflow
scheduling policy. Currently, there are four such scheduler
policies in GNU/Linux MPTCP implementation, namely;
MPTCP BLEST, MPTCP Round-Robin, MPTCP Redundant,
and Default MPTCP Scheduler [4]. However, the scheduling
policy in GNU/Linux can easily be changed to cater
different requirements [15].

Fig. 3 MPTCP Scheduler

According to the study of Frömmgen et al., there may be

different bandwidth requirements for the applications and
some of the applications are very sensitive to the latency. In
such cases the packets have to be scheduled based on the
requirement of the application. Therefore they have
highlighted the need of intelligent schedulers to MPTCP
which can cater the need of these applications. With the
implementation, they have provided a Python library for the
user space application which is going to cover all the
complexities of network sockets and scheduling. Therefore,
the application developer can load their scheduling
specification for the application by using the programming
model provided. The implementation has several layers of
functionalities which are used to optimize the compilation of
the scheduler and interpretation. Finally they have a runtime
environment in the GNU/Linux kernel to execute the
application defined scheduler.

The real argument to make at this point is, what is the
most suitable position to make the subflow selection
decision. Is it at the MPTCP level, application level or at the
user level. In the original MPTCP the subflow will be
selected based on factors like TCP subflows’ state and the
congestion window of the subflow as we mentioned earlier.

MPTCP has most of the information which is necessary to
make the scheduling decision. In the proposed mechanism of
Frömmgen et al, the decision making authority for
scheduling has been given to the application. The third
option is the user level. In this case the user can consider
external factors when making the subflow decision, such as
the cost for each connection on subflows, privacy issues, and
the requirement of the user. Therefore when considering
these three different levels, there are pros and cons to
discuss.

When making the subflow selection and scheduling in the
MPTCP level, the user and the application is totally blind
about the path selection and the scheduling process. Users
and the application does not even have any clue whether it is
using MPTCP to communicate or whether it is using
traditional TCP. All the hard work related to the scheduling
is handled by the MPTCP. This is an advantage for the user
as well as for the application. Such that the application nor
the user does not need to worry about selecting the best path
for scheduling the packets. But the problem is, does the user
or application need to interfere with the scheduling process.
In some cases, the user might have some requirements to
allow or restrict sending packets via specific connections
due to monetary cost or even privacy factors.

In this study, we incorporate a new policy to get the user’s
preference to assign different priorities for MPTCP
subflows.

C. MPTCP recovery from packet losses
In TCP, there are three mechanisms available to recover

from packet loss; Retransmission Timeouts (RTO), Fast
Recovery (FR), and TCP Loss Probe (TLP) [5]. MPTCP also
inherits these mechanisms. If the MPTCP handles the
recovery, the lost packets are retransmitted through an
available subflow according to the scheduler's policy at that
particular time. If the TCP handled the recovery, packets
would be retransmitted through the same subflow as before.
GNU/Linux's implementation of MPTCP uses heuristics to
decide whether the retransmission is FR based or RTO
based. In FR, the segments use the same subflow as previous
communication, wherein RTO, the scheduler, re-evaluates
the packet transmission and would use a different subflow
for recovery [5].

An Ad-hoc network is composed of nodes that are mobile
and sparsely connected to create a communication network.
Therefore, ad-hoc networks are intrinsically dynamic in their
routing. As a result, they have significant delays in packet
transmission which could result in frequent retransmissions
[2]. Therefore, employing an Ad-hoc network as a subflow
of MPTCP would make MPTCP select the more stable
alternative subflows such as the flow over a stable fixed link
[4]. GNU/Linux kernel supports both Ad-hoc networking
and MPTCP. Therefore, employing an Ad-hoc network as an
MPTCP subflow on the GNU/Linux environment has given
us a viable experimentation set up to study how user
preferences can be passed to the TCP layer to push MPTCP
to select paths that it would otherwise abandon. User
preference is passed to the kernel as a soft directive - a hint.
This testbed, rather than a simulation, allows us to explore
the issue in a realistic environment.

5 K. Liyanage1*, T. Wijethilake#2*, K. Gunawardana3*, K.Thilakarathne4*, P. Wijesekera5Ϯ, C. Keppitiyagama6*

March 2021 International Journal on Advances in ICT for Emerging Regions

To this end, we show the viability of passing user hints to
the kernel to focus on a subflow over the other alternatives.
We contribute the following,

1. We developed a method to influence the path

selection and scheduling of MPTCP with the
preference/requirement of the end user.

2. We show that the proposed modifications are
practical and with negligible overhead.

3. We show that the proposed work can pave the way
to much interesting security research

III. DESIGN
As mentioned before, the goal of this research is to

prioritize the flow of network packets through the Ad-hoc
connection and get the user preference for that process.
Figure 4 illustrates a high level view of the experimental
setup. One connection was created through ISP whereas the
other connection established through an Ad-hoc network.
Application layer made unaware of the MPTCP to make
existing applications reusable despite the changes at lower
layers of the network stack. User preference is set to Ad-hoc
network in order to prioritize traffic through Ad-hoc network.
A new scheduling mechanism is introduced to honor user
preference in selecting MPTCP subflows. In order to achieve
these goals, we have identified three main tasks. They are,

• Passing user hints to the kernel.
• Prioritizing Ad-hoc subflow.
• Implementing alternative loss recovery.

Fig. 4 Design

A. Passing user hints to the kernel
There are several mechanisms to pass user hints from user

space to kernel space, such as using Netlink sockets [7] and
using extra fields like sin_zero in socket [8]. However, it is
prudent to pass the hint from user to the kernel without
modifying user applications. GNU/Linux has an abstraction
layer providing an interface to the kernel data structures via
a pseudo file system called “\proc”. Therefore, in order to
convey the hint from user space to the kernel space without
modifying an application, we use the proc file system [9].
We pass the Internet Protocol (IP) address of the subflow we

prefer to prioritize using the proc filesystem, thereby the
MPTCP scheduler can act accordingly.

Since, we use an Ad-hoc network as a possible path of
communication, we keep the availability of an ad-hoc
network in a new variable (is_adhoc_avail) which is stored
in the MPTCP control buffer (mptcp_cb). In MPTCP
architecture, MPTCP control buffer is visible to all
subflows. We use MPTCP controller to set is_adhoc_avail
variable upon detecting an ad-hoc network. The MPTCP
scheduler is modified to refer to the variable to check the
availability of ad-hoc networks when selecting subflows (see
Fig. 5).

Fig. 5 Modified MPTCP Scheduler

B. Prioritizing Ad-hoc subflow
The default scheduler policy is to use the subflow with

minimum latency and lowest number of scheduled
packets. Therefore, given the nature of ad-hoc networks,
there is very less probability of getting an ad-hoc network
scheduled through the MPTCP default scheduler. Therefore,
we propose a derived version of MPTCP scheduler which
we have illustrated in Figure 3, henceforth referred to as the
scheduler. The scheduler initially checks if there are any ad-
hoc networks connected to one of the network interfaces by
referring to the is_adhoc_avail variable set by MPTCP
controller.

Even though the ad-hoc network is available, it may be in
an error state. A subflow can become unusable for various
reasons such as higher RTT, higher error rate, or complete
loss of the channel. Such subflows are put into an error state
using the adhoc_priority flag in the MPTCP control
buffer to make sure that the scheduler does not use the
particular subflow. We then keep track of the erroneous ad-
hoc network subflow using a socket flag corresponding to
the particular subflow [6]. The erroneous subflows related to
ad-hoc networks are separately probed at regular intervals

User-Controlled Subflow Selection in MPTCP: A Case Study 6

International Journal on Advances in ICT for Emerging Regions March 2021

using a retransmission packet and check if those can be
reactivated. An acknowledgement received in response to a
retransmission triggers reactivation reversing the value of
adhoc_priority flag to make the subflow active. Thus,
the subflow needs to be checked for usability by referring to
the value of adhoc_priority in the MPTCP control
buffer before scheduling. In this implementation, as it is
shown in equation 1, we used the deactivation threshold, 𝛅𝛅,
to deactivate the prioritized sub-flow.

 𝛅𝛅 = 2* min(SRTT) (1)

SRTT is the Smoothed RTT and the min(SRTT) is the

minimum of the SRTTs across all the subflows. Prioritized
subflow is deactivated if its SRTT is larger than the
deactivation threshold. Note that this threshold is an
arbitrary value used for our experiments and it can be set by
the user.

In design, TCP retransmission intervals get incremented
exponentially over time thus making a particular path
reactivation time to increase exponentially. Therefore, a
connection which has regular interruptions, such as Ad-hoc
networks, could not be effectively used with existing TCP
design. Hence, we propose a redesigned TCP retransmission
strategy incorporating user preference as a hint for MPTCP
to reactivate a subflow thus making a sub-flow attached to
an ad-hoc network considered for scheduling.

Considering the deficient reliability of ad-hoc networks,
TCP connection initiation is not scheduled through the ad-
hoc network. Therefore, subflow corresponding to the ad-
hoc interface has only been scheduled after confirming that
the initial communication has happened through one of the
interfaces other than ad-hoc networks.

A subflow complying the conditions stated gets scheduled
by the scheduler with packets to be sent to an MPTCP aware
destination.

C. Implementing alternative loss recovery
Ad-hoc networks are volatile. Therefore, the standard loss

recovery mechanism used by MPTCP has to be altered
accordingly to the behaviour of Ad-hoc networks. In the
standard MPTCP loss recovery, for each unsuccessful
retransmission, the retransmission timeout doubles. But in
our implementation, first it checks whether the
retransmission is happening through an Ad-hoc socket. If it

Fig. 6 Data rates on both the interfaces of Modified MPTCP with same

latency

is an Ad-hoc socket, then the retransmission time doubles
and keeps it constant for a defined amount of retransmission.
The number is taken as part of the hint set by the user
reflecting a weightage to use ad-hoc network. For our
evaluations, we have taken the maximum weightage. After
that it will switch back into doubling retransmission timeout
as in the standard MPTCP. With this we are checking the
availability or recovery of Ad-hoc connections more
frequently compared to standard MPTCP. The main
objective of this more persistent re-trying is to make sure
that the priority is given to the ad-hoc network. We, however,
believe that this will result in longer waiting but we
hypothesize that there will be cases that longer waiting can
be a worthy compromise over switching to unpreferable
subflow.

IV. EVALUATION
As proposed in Section III, we modified the standard

MPTCP in order to pass user hints to the TCP scheduler. To
evaluate the correctness and the effectiveness of the
modified protocol, we carried out several experiments in a
virtual environment. Each host in the virtual environment
was configured to have two WiFi network interfaces, such
that one interface was configured with infrastructure mode,
and the other was configured with Ad-hoc mode. Further,
the communication links were restricted to have a maximum
bandwidth of 1MB/s by using VMware [10] to emulate
physical networks’ behavior. The rest of this section is
organized to present all the experiments.

A. Overhead of the new MPTCP kernel stack
The objective of our first experiment was to investigate

whether the standard MPTCP is unduly affected by the
changes introduced into the MPTCP kernel stack. Thereby,
the behavior of data flow was examined using the data rate
as a metric, and the modified MPTCP was compared against
the standard MPTCP. To eliminate the bias of latency in one
interface over the other, both the interfaces were configured
with the same latency.

As we see in Fig. 6 and Fig. 7, both the standard and the
modified MPTCP have reached stable data rates up to 500
kB/s. Achieving the same stable level of data rate shows that
the presented modifications do not incur significant
overheads.

Fig. 7 Data rates on both the interfaces of Standard MPTCP with same

latency

7 K. Liyanage1*, T. Wijethilake#2*, K. Gunawardana3*, K.Thilakarathne4*, P. Wijesekera5Ϯ, C. Keppitiyagama6*

March 2021 International Journal on Advances in ICT for Emerging Regions

To explore the rate of data flow when using the modified
MPTCP with the user controlled subflow selection, we first
prioritized the network interface that was configured with
Ad-hoc mode by providing a user hint. Then we initiated the
connection using the prioritized interface and observed the
data rate with the time. Thereafter, we explored the rate of
data flow separately by initiating another connection using
the second interface which was non-prioritized. Fig. 8 and
Fig. 9 show the graphs for those two experiments
respectively. With these two experiments, we discovered
that the scheduler has scheduled the segments only to the
prioritized interface and the data rate was dropped to a half
of the full capacity. The sole reason for the bandwidth
reduction is the user control over the subflow selection
where the data was sent only through the prioritized Ad-hoc
interface.

Fig. 8 Data rates when creating the initial connection through prioritized

interface

Fig. 9 Data rates when creating the initial connection through non

prioritized interface

B. Path switching on modified MPTCP
Since the modified MPTCP permits prioritizing subflows,

we have to test the path switching ability when the
prioritized path fails. Typically, the Ad-hoc connection is
unstable compared to the infrastructure connection in a host
with an infrastructure based network connectivity and an
Ad-hoc connectivity. Preferably, in this experimental setup,
even though the ad-hoc connection is prioritized, the host
has to switch to the infrastructure based connection when the
ad-hoc connection fails. In order to test whether it switches
back and forth from prioritized subflow to non-prioritized
subflow, we have conducted an experiment.

To simulate breaking the prioritized subflow, we
artificially block the prioritized subflow time-to-time. The
latency of the connections was set to 40ms using tc
command and the maximum bandwidth was set as 512kB/s.
The server drops all packets from the Ad-hoc connection,
which is the prioritized connections, for a five seconds
period, with a gap of ten seconds. During those periods, we
observed that the path is switched to the connection through
the infrastructure based network and once the Ad-hoc
connection is active, the connection switches back to the
prioritized ad-hoc connectivity. Fig. 10 clearly shows that
data rate via non-prioritized standard interface is minimal
while the prioritized ad-hoc connection is having higher data
rate and vice versa. It implies that when the prioritized
connection is active the data flows through it, and when the
prioritized connection fails data starts to flow through the
non-prioritized infrastructure based connection.

Fig. 10 Path switching between prioritized and non-prioritized interfaces.

C. Use of prioritized subflow with high latency
One of our main objectives of this study is to make

MPTCP tolerate high latency in Ad-hoc networks based on
user preference. In this experiment, the prioritized sub-flow,
which is the Ad-hoc connection, has configured with high
latency (< deactivation threshold) compared to the non
prioritized subflow. Fig. 11 shows the prioritized sub-flow
with high latency is still used to transfer the data.

For the evaluation 40ms latency was used in non
prioritized subflow and 60ms latency was used in prioritized
subflow.

Fig. 11 With high latency (< deactivation threshold)

User-Controlled Subflow Selection in MPTCP: A Case Study 8

International Journal on Advances in ICT for Emerging Regions March 2021

D. Switching the face of higher latency
In this experiment, 40ms was used as the latency of the

non prioritized subflow and 200ms was used as the latency
of the prioritized subflow. As shown in Fig. 12, when the
latency difference is high, scheduler falls back into default
behaviour and more data has been transferred through the
interface with lower latency.

Fig. 12 Throughput between prioritized and non-prioritized interfaces when

the latency difference is high

E. Prioritized subflow recovery speed evaluation
This experiment was conducted to observe the path

recovery speed of modified MPTCP, compared with the
standard MPTCP. It has used 40ms as the latency on all the
subflows. In the standard MPTCP connection, one sub-flow
was dropped and measured the time taken to recover the
particular path. The same method was used in the Modified
MPTCP and measured the time taken to recover the dropped
subflow. It took around 90ms to recover the path in
Modified MPTCP and around 140ms in Standard MPTCP.
Therefore, the Modified MPTCP has shown a significant
improvement than the standard MPTCP by recovering the
path around 50ms earlier.

V. DISCUSSION
The main objective of this study is to explore the viability

of influencing the MPTCP scheduler in kernel on the
selection of a subflow for MPTCP. We show that,

a) it is practically feasible to incorporate user preference
when selecting subflows and scheduling paths,

b) the proposed modifications incur minimal overhead,
making the proposed solution a practical alternative.

A. Conditional priority
The paper presents a use-case where a user can instruct

the kernel to use the ad-hoc network over infrastructure
mode. The hint creates a priority to a given subflow giving
other alternatives a chance, i.e., the kernel will try to use the
preferred subflow as much as possible while switching to
another subflow as soon as the preferred subflow is no
longer viable.

In a future setup, one could argue that users could
potentially submit conditions to set up the priorities. In such
a setup, whichever flow that fulfills the condition would be
used to send the packets. We believe the proposed research

will pave the way for future more complicated priority setup
or directions.

B. Application-level decision making
Technically speaking, priority set up can be achieved at

any layer of the TCP/IP stack. Lower in the stack has less
flexibility for users but provides abstraction for users who
want less configuration headache and higher up at the stack
has more user control but could require additional user
involvement which could be a distraction for some.
However, it is important to discuss the pros and cons of each
approach.

For application to participate in the subflow selection, the
application should have access to a number of parameters,
such as the state of the interface (active or not), the
congestion window of the subflow, the RTT estimation, etc.
which is not readily available at the application
layer. Further, making such information available for the
application layer would have widened the threat surface as
well by making the application literally in control of the
transport layer of the device. Recent events that surfaced
applications rerouting traffic and moderating the content for
surveillance purposes, it is better not to give applications
such control [22].

C. User space decision making
With the design we proposed in the study, the MPTCP

has the relevant and standard information to select the most
suitable subflow for a particular situation to schedule the
communication User hint and priorities (policy) feeded to
the scheduler would act as additional information to make
more effective decisions in catering the specific user needs
i.e. the system will get qualitative and subjective insights
such as opportunistic costs, privacy concerns, etc. in a
quantitative form to make more accurate and effective
decisions which otherwise are not available for the MPTCP
scheduler / kernel.

The user space decision making or priority setting can be
one level up than the proposed research. One could also
design in a manner that users can specify priorities per
application basis.

To demonstrate the effectiveness of the mechanism we
used, we test our system between infrastructure mode and
ad-hoc mode WiFi connections. If the vanilla MPTCP is
allowed to take path decisions it prefers the infrastructure
networks since it is less volatile than the Ad-hoc network.
However, from the point of view of the user, the Ad-hoc
network is less costly than the ISP based infrastructure
network and the Ad-hoc network should be used whenever
possible. Hence, we showed that we can influence the kernel
to use the ad-hoc connection over the infrastructure mode.

D. Privacy and security concerns
MPTCP provides useful functionality from a congestion

and flow control perspective. However, we believe that this
functionality has exciting security and privacy implications
that can benefit users safeguarding them from data-hungry
malicious actors. In the era of tight cyber-surveillance and
control of Internet Access, MPTCP can be a solution where

9 K. Liyanage1*, T. Wijethilake#2*, K. Gunawardana3*, K.Thilakarathne4*, P. Wijesekera5Ϯ, C. Keppitiyagama6*

March 2021 International Journal on Advances in ICT for Emerging Regions

users can instruct the kernel for packet-level finer-grained
data routing over preferred network connections.

Users with restrictions over Internet Access can instruct
the kernel to send certain portions of network
communication over the subflow with less scrutiny and
control. Such fine-grained routing can be completely
transparent to the user-level application, but more work
needs to be done on session management at the kernel.The
subflow management can also be a privacy win for users.
Different subflows avoid ISP or state-level actors from full
visibility into the communication at a given moment. That
will reduce the possibility of network traffic reconstruction
or data leakage from a given entity. Lack of full visibility
will also let the user have more control over who can see
which data in their network traffic.

One interesting future avenue would be to understand
merging with Tor and MPTCP [23, 24]. Prior work has
already looked into this but we believe it is interesting to
understand how different decision making layers affect the
consumer privacy and security expectations while merging
with Tor.

These exciting avenues are possible only if the user can
pass on their preferences and priorities to the kernel and
transparently to the application. Thus, we believe this will
open up exciting research, along with security and privacy.
However, the current widespread TCP adoption is due to its
simplicity and stability from the design of TCP to its
implementations. While MPTCP provides much-needed
functionality for security, cost reduction, etc., this could
eventually challenge the core simplicity. This reason might
further explain the conservative adoption of MPTCP in the
wild. While current complicated user needs will call for
more TCP functionality, we should be cautious not to harm
the robust core of TCP.

VI. CONCLUSION
MPTCP has introduced dynamism to the traditional TCP

by permitting to establish multiple paths through different
network interfaces in a host. MPTCP Scheduler is
responsible for segmentation/integration of data into/from
multiple subflows and making the decision on selecting a
subflow. However, we believe that the MPTCP Scheduler
does not possess or cannot discover all the metrics required
to make such a decision independently. In addition to that,
though MPTCP increases the reliability and the throughput
of the connection by providing redundant paths, the user has
no control over path selection for the data flow.

Considering all these limitations, in this study, we
proposed an approach to take user preferences into account
when selecting subflows in MPTCP. We modified the
MPTCP kernel stack and carried out several experiments to
investigate the viability of this mechanism. The results of the
experiments exemplified that our proposed mechanism can
take user preferences into account when selecting MPTCP
subflows. Also, we demonstrated that it is possible to pass
user preferences as a hint to the kernel without changing the
applications. A hint is not a hard rule, rather a soft directive
to the MPTCP Scheduler to follow. In such a context,
applications are unaware of the presence of MPTCP or the
use of user-supplied hints. Further, experiments showed that
our changes to the MPTCP Scheduler did not introduce extra
overhead to the regular MPTCP operation. Finally, we used

a test environment with a handicapped (in terms of latency
and stability), but user-preferred, subflow to demonstrate
that it is possible to cater to user preferences even in such an
extreme environment.

REFERENCES
[1] Z. Khan, H. Ahmadi, E. Hossain, M. Coupechoux, L. A. Dasilva,

and J. J. Lehtomäki, “Carrier aggregation/channel bonding in next
generation cellular networks: methods and challenges,” IEEE
Network, vol. 28, no. 6, pp. 34–40, 2014.

[2] "RFC 793 - Transmission Control Protocol", Tools.ietf.org, 2020.
[Online]. Available: https://tools.ietf.org/html/rfc793. [Accessed: 19-
Jan- 2020].

[3] P. Wijesekera and C. Keppitiyagama, "COMONet: Community
Mobile Network", arXiv preprint arXiv:2009.05966. 2020.

[4] “RFC 6824 - tcp extensions for multipath operation with multiple ad-
dresses.” https://tools.ietf.org/html/rfc6824. [Accessed on
03/20/2019].

[5] M. Handley, C. Raiciu, A. Ford, J. Iyengar, and S. Barre, “[5]"RFC
6182 - Architectural Guidelines for Multipath TCP
Development", Tools.ietf.org, 2020. [Online]. Available:
https://tools.ietf.org/html/rfc6182. [Accessed: 19- Feb- 2020].

[6] M. Lima, N. Fonseca, and J. de Rezende, “On the performance of tcp
loss recovery mechanisms,” pp. 1812 – 1816 vol.3, 06 2003.

[7] P. Neira-Ayuso, R. Gasca and L. Lefevre, "Communicating between
the kernel and user-space in Linux using Netlink sockets", Software:
Practice and Experience, p. n/a-n/a, 2010. Available:
10.1002/spe.981 [Accessed 19 February 2020

[8] T. Wijethilake, K. Gunawardana, C. Keppitiyagama and K. de
Zoyza, "An Alternative Approach to Authenticate Subflows of
Multipath Transmission Control Protocol using an Application Level
Key", in 13th International Research Conference, General Sir John
Kotelawala Defence University, 2020.

[9] T. Bowden, B. Bauer, J. Nerin and S. Feng, "The /proc filesystem",
[online] Available:
https://www.kernel.org/doc/Documentation/filesystems/proc.txt
[Accessed: 19- Feb- 2020]

[10] "VMware Inc., "Using VMware Workstation Pro", VMware, Inc.,
2019. [Online]. Available: https://docs.vmware.com/en/VMware-
Workstation-Pro/. [Accessed: 19- Feb- 2020].

[11] R. Withnell and C. Edwards, “Towards a Context Aware Multipath-
TCP,” 2015 IEEE 40th Conference on Local Computer Networks
(LCN), 2015.

[12] S. H. Baidya and R. Prakash, “Improving the performance of
multipath TCP over heterogeneous paths using slow path
adaptation,” 2014 IEEE International Conference on
Communications (ICC), 2014.

[13] A. Elgabli and V. Aggarwal, “SmartStreamer: Preference-Aware
Multipath Video Streaming Over MPTCP,” IEEE Transactions on
Vehicular Technology, vol. 68, no. 7, pp. 6975–6984, 2019.

[14] Y.-S. Lim, E. M. Nahum, D. Towsley, and R. J. Gibbens, “ECF: An
MPTCP Path Scheduler to Manage Heterogeneous
Paths,” Proceedings of the 13th International Conference on
emerging Networking EXperiments and Technologies, 2017.

[15] C. Paasch, S. Ferlin, O. Alay, and O. Bonaventure, “Experimental
evaluation of multipath TCP schedulers,” Proceedings of the 2014
ACM SIGCOMM workshop on Capacity sharing workshop - CSWS
14, 2014.

[16] A. Frömmgen, A. Rizk, T. Erbshäußer, M. Weller, B. Koldehofe, A.
Buchmann, and R. Steinmetz, “A programming model for
application-defined multipath TCP scheduling,” Proceedings of the
18th ACM/IFIP/USENIX Middleware Conference, 2017.]

[17] O. Bonaventure, "Observing Siri : the three-way handshake",
multipath-tcp.org, 2014. [Online]. Available: http://blog.multipath-
tcp.org/blog/html/2014/02/24/observing_siri.html. [Accessed: 22-
Feb-2020].

[18] "The first Multipath TCP enabled smartphones — MPTCP",
Blog.multipath-tcp.org, 2021. [Online]. Available:
http://blog.multipath-
tcp.org/blog/html/2018/12/10/the_first_multipath_tcp_enabled_smart
phones.html. [Accessed: 08- Mar- 2020].

[19] "Apple Developer Documentation", Developer.apple.com, 2020.
[Online]. Available:
https://developer.apple.com/documentation/foundation/urlsessioncon
figuration/improving_network_reliability_using_multipath_tcp.
[Accessed: 08- Mar- 2020].

User-Controlled Subflow Selection in MPTCP: A Case Study 10

International Journal on Advances in ICT for Emerging Regions March 2021

[20] "An Evaluation of Multi-Path Transmission Control Protocol
(M/TCP) with Robust Acknowledgement Schemes", IEICE
TRANSACTIONS on Communications, vol. 87-, no. 9, pp. pp.2699-
2707, 2004. Available:
https://search.ieice.org/bin/summary.php?id=e87-b_9_2699.
[Accessed 10 January 2021].

[21] S. Barré, C. Paasch and O. Bonaventure, "MultiPath TCP: From
Theory to Practice", in NETWORKING 2011 - 10th International
IFIP TC 6 Networking Conference, Valencia, 2011.

[22] D. Harwell and E. Nakashima, "Federal prosecutors accuse Zoom
executive of working with Chinese government to surveil users and
suppress video calls", Washington post, 2020. [Online]. Available:
https://www.washingtonpost.com/technology/2020/12/18/zoom-
helped-china-surveillance/. [Accessed: 27- Dec- 2020].

[23] W. De la Cadena, D. Kaiser, A. Panchenko and T. Engel, "Out-of-
the-box Multipath TCP as a Tor Transport Protocol: Performance and
Privacy Implications," 2020 IEEE 19th International Symposium on
Network Computing and Applications (NCA), Cambridge, MA, USA,
2020, pp. 1-6, doi: 10.1109/NCA51143.2020.9306702.

[24] "annymous/oniontinc", GitHub, 2020. [Online]. Available:
https://github.com/annymous/oniontinc. [Accessed: 12- Dec- 2020].

[25] K. Liyanage, T. Wijethilake, K. Gunawardana, K. Thilakarathne, P.
Wijesekera and C. Keppitiyagama, "Priority Based Subflow
Selection in MPTCP: A Case Study", in 2020 20th International
Conference on Advances in ICT for Emerging Regions (ICTer),
Colombo, Sri Lanka, 2020.

