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Abstract— The data imbalance problem is a widely explored 

area in the Machine Learning domain. With the rapid 

advancement of computing infrastructure and the incessant 

increase in the amount and variety of data generated, the data 

imbalance problem has prevailed and reshaped with the 

requirement for novel approaches to address it. Among the 

different approaches that exist to address the data imbalance 

problem, such as data-level and algorithmic-level, data-level 

approaches are more popular among the scientific community 

due to their classifier-independent nature. When investigating 

current trends in data-level approaches, it is evident that 

oversampling is a technique frequently explored due to its 

adaptability to scenarios where extreme data imbalance is 

present. This paper presents a review of different oversampling 

techniques with a comprehensive analysis of the strategies that 

have been used along with possible areas that looks promising 

to explore further to develop more advanced oversampling 

techniques. 

Keywords— Data Imbalance Problem, Classification Analysis,

Oversampling.

I. INTRODUCTION

ata mining and knowledge discovery have become

indispensable in the contemporary age of big data for 

making accurate decisions and predictions. Classification 

analysis is one of the most commonly employed data mining 

tasks for various market and engineering problems, such as 

bankruptcy prediction, network intrusion detection, fraud 

detection, and software fault detection, where classifiers are 

trained to discriminate between the different classes 

representing the problem [1]. When using traditional 

classifiers to carry out the said tasks, it can be observed that 

these classifiers perform well over evenly distributed data. 

This is due to the fact that traditional classifiers are designed 

to increase accuracy with no notion of the distribution of 

data [2]. However, in the real world, data collected for 

classification analysis are usually class (or Data) imbalanced. 

In the context of classification analysis, class imbalance 

refers to classification problems where the dataset contains 

at least one class with significantly fewer samples than other 

classes in the dataset. In a two-class classification problem, 

the class with the fewest samples is called the minority class, 

and the other class is called the majority class [3]. The class 

 

 

disproportionate among these samples is identified using the 

Imbalance Ratio (IR), which can vary from dataset to dataset. 

This metric simply represents the ratio between the majority 

and minority class samples. 

    In many practical applications of classification analysis, 

the minority class represents the positive examples or the 

target class where the adverse effect of false-negative 

predictions is much higher than false-positive predictions [1]. 

For example, when considering credit card fraud detection, 

there can be thousands of regular transactions for a single 

fraudulent transaction, making the target class the minority 

class in the dataset. Suppose a regular transaction is flagged 

as a fraudulent transaction (false positive) by a trained model. 

In that case, it can later be resolved using further 

examinations. Still, on the other hand, if a fraudulent 

transaction is incorrectly classified as a regular transaction 

(false negative), which is the usual behavior of traditional 

classifiers on imbalanced datasets, the primary intention of 

the classifier is futile. The justification behind this behavior 

is that, in extreme imbalance scenarios where positive 

examples are under-represented, they are often mistaken for 

noise, outliers, or allocated to the majority class, ignoring 

the importance of their characteristics, leading traditional 

learning models to favor the majority class heavily [4]. 

    Another significant observation of class imbalance is that, 

regardless of the poor performance of standard classifiers on 

the minority class, the classifier would still make predictions 

with higher accuracy depending on the imbalance ratio of 

the classes. For example, suppose the imbalance ratio of a 

binary class dataset is 9:1 (for nine samples in the majority 

class, there is only one minority sample). The classifier can 

acquire an accuracy of 90% by classifying all the samples 

into the majority class, which is a decent accuracy when 

considering a standard classifier [5]. In practical applications, 

the imbalance ratio can be much higher than the ratio 

depicted in the above example. It is also evident that 

accuracy is not a suitable evaluation metric to evaluate a 

standard classifier when datasets are imbalanced as the 

importance of the minority class is ignored. 

A. Addressing the Data Imbalance Problem

The approaches used to overcome the data imbalance

problem can be categorized into three groups as represented 

in Fig 1: External approaches (data level), Internal approach 

es (algorithmic level), and Hybrid approaches. 

The external approaches focus on balancing the dataset 

either by removing the majority class samples through 

undersampling or adding minority class samples through 

oversampling. It is also possible to combine oversampling 

and undersampling to form hybrid sampling methods. The 

objective of external approaches is to reduce the imbalance 

ratio to achieve a favorable distribution among the classes. 
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Internal approaches involve developing and improving the 

underlying  classification  algorithm  without  altering  the 

dataset involved [7]. There are mainly two ways that internal 

approaches  address  the data  imbalance  problem . The  first 

method  is cost-sensitive  learning , where  the classifier  is 

modified  such  that  the misclassification  of minority  class 

samples  is  heavily  penalized  compared  to  the 

misclassification  of majority class samples. The second and 

most popular  internal  approach  is to incorporate  ensemble -

based  classifiers  where  multiple  weak  classifiers  are 

combined  to  improve  the  performance  of  the  overall 

classification  algorithm . Apart from these methods , there 

have also been algorithmic classifier modifications proposed 

in past  years  to improve  the classifier  performance  on 

classifiers  like Support  Vector  Machines  (SVM ), Extreme 

Learning  Machines  (ELM), and Neural  Networks  (NN). 

Moreover , internal  approaches  can also  be combined  with 

external  approaches  to derive  hybrid  approaches  that 

incorporate  both  advantages  and disadvantages  of internal 

and external approaches [1][8].

 

   

When  comparing  the  approaches  to address  the  Data 

Imbalance  problem , it is apparent  that researchers  prefer 

external  approaches  over internal  approaches  mainly due to 

the classifier independence [5]. In external approaches, since 

only  the dataset  is modified , it gives  the freedom  to select 

any suitable classifier for the classification task. However, in 

the case of internal  approaches , as the internal  structure /

algorithm  of  the  classifier  is  modified  to  address  the 

imprecise  classification  of  minority  class  samples , the 

dataset  is heavily  dependent  on the modified  classifier . 

Nevertheless , it is impractical  to use the same classification 

algorithm with every dataset in different contexts. Therefore, 

on the basis  of generalizability , it is reasonable  to presume 

that  external  approaches  provide  an added  advantage  over 
internal approaches.

 

B.

 

Overview of External Approaches

 

As aforementioned, external approaches to solving the 

data imbalance problem are heavily favored in the field of 

research due to classifier independence. When considering 

oversampling and undersampling, both methods have their 

own advantages and disadvantages. The main drawback of 

oversampling is that it risks generating synthetic data that 

can lead to overfitting. This can be caused by generating 

synthetic samples that closely resemble original samples or 

by incorrectly positioning (overlapping other classes) 

synthetic samples in the data space. In the case of 

undersampling, it risks excluding important information 

from the dataset, such as samples that are crucial when 

deciding the decision boundaries or samples that contain a 

higher weight in representing a particular class or a feature. 

Apart from the exclusion of important information, 

undersampling can also suffer from data scarcity after 

resampling if the minority class contains extremely fewer 

samples.

 

Throughout the past years, many studies have been 

carried out to investigate methods and mechanisms to 

mitigate these drawbacks

 

from external approaches. For 

example, the most intuitive technique to add or remove data 

to/from a given class is by performing random selections. 

These primitive techniques have evolved and improved over 

time to address their foundational drawbacks by combining 

more complex techniques and statistical and probabilistic 

methods.

 

When comparing oversampling and undersampling, even 

though oversampling leads to overfitting, it is possible to 

detect it during the earlier stages of training using 

straightforward approaches such as using a good train test 

split and observing the change in testing error compared to 

the training error. However, in the case of important 

information exclusion caused by undersampling, although it 

might work well with the resampled dataset, the classifier 

trained with excluded samples can lead to many 

misclassifications with the introduction of new data samples. 

Mohammed et al.

 

[9] validate this assertion, where several 

state-of-the-art classifiers are used to evaluate oversampled 

and undersampled datasets. The authors have concluded that 

Fig. 1 Approaches to address the data imbalance problem. 
n

Even  though  most  of the  proposed  external  approaches 
resample  the  dataset  until  the  number  of samples  in each 
class  is equal , studies  such  as [6] demonstrate  that it is not 
always required  to maintain  a 50:50 class distribution  when 
resampling. However, there is no hard and fast rule to decide 
on a favorable  imbalance  ratio  as it can vary depending  on 
the domain and the type of classifier used.
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compared to undersampling, oversampling of datasets leads 

to a more accurate classification. 

There are numerous studies, including [10] and [11], that 

review oversampling techniques by conducting experiments 

and comparing the results to provide a comprehensive 

evaluation of the performance of different oversampling 

techniques in practical settings. However, the objective of 

these studies seems to be finding the better technique out of 

a set of available techniques based on a systematic analysis, 

and they provide limited information on the approaches and 

methodologies used in such techniques. As a result, a 

researcher may find it challenging to comprehend the 

underlying strategies of an oversampling technique, which, 

in turn, would lead to failure in addressing its limitations. 

This paper provides a comprehensive review of some 

popular oversampling techniques used to address the data 

imbalance problem, highlighting their strategies and 

potential areas for further improvement. The aim of this 

study is to provide insights and guidance for researchers and 

practitioners in the field of machine learning who are 

interested in developing more robust oversampling 

techniques to address the data imbalance problem. 

The rest of this paper is organized as follows. Section II 

provides a comprehensive review of existing oversampling 

techniques, highlighting their strategies when performing 

oversampling. Section III presents the key findings of the 

review, emphasizing the factors that need to be considered 

when formulating new oversampling techniques, followed 

by the conclusion in section IV. 

II. ANALYSIS OF OVERSAMPLING TECHNIQUES 

When selecting studies for the review, a deliberate 

decision was made to include oversampling techniques that 

are widely recognized and used in the machine learning 

community. The rationale behind this choice was that these 

methods have been proven to be successful and efficient in 

previous studies, such as [10] and [11], and that they are 

readily accessible and available in popular machine learning 

libraries like scikit-learn. By incorporating these well-

established oversampling techniques, this study aims to 

ensure that the review reflects the best practices and 

standards in the field. 

Oversampling approaches generate synthetic minority 

class samples and combine them with the existing dataset, 

resulting in a new dataset that is more appropriate for 

training. The most intuitive form of oversampling is random 

oversampling, where minority class samples are randomly 

selected and duplicated without any specific selection 

standard.  

Random oversampling can be effective for machine 

learning algorithms influenced by skewed distributions in 

instances where the overall size of the dataset is small and 

the imbalance is not that significant [9]. However, in cases 

where the dataset is heavily imbalanced, or the number of 

minority class samples is insufficient to train a decent 

classifier, random oversampling can risk classifier 

overfitting during training due to repeated duplication of the 

minority samples. Despite the implementation simplicity and 

fast execution, which is ideal for large and complex datasets, 

the lack of generalizability and high likelihood of overfitting 

in random oversampling has led researchers to look for more 

robust (robustness is denoted as the ability to oversample 

without introducing any bias in this context) alternative 

oversampling techniques.   

When exploring literature on oversampling, the most 

widely used techniques in the scientific community are 

SMOTE [12] and its variants. SMOTE stands for Synthetic 

Minority Oversampling Technique, where the algorithm 

generates a synthetic sample along the line segment that 

joins a randomly selected minority class sample and one of 

its K nearest neighbors. In SMOTE, the value of K is a 

parameter that should be specified prior to its application, 

and minority class samples are randomly chosen from the set 

of K-Nearest Neighbors based on the amount of 

oversampling required. The operation of the SMOTE 

algorithm is further elaborated in Fig. 2, where (a) The 

majority class and minority class samples are represented in 

blue and green colors, respectively. (b) A minority class 

sample is randomly selected (black), and its K-nearest 

neighbors (3 in the image) are selected. (c) A new synthetic 

sample (red) is generated on the line that joins the randomly 

selected minority class sample and its nearest neighbor. 

Fig. 2 Graphical representation of SMOTE algorithm [13] 

 

As the synthetic samples generated by SMOTE are not 

duplicates of already existing samples, they are more 

generalizable than samples generated through random 

oversampling, reducing the risk of overfitting. However, due 

to the random selection of minority class samples with a 

uniform probability for oversampling, densely populated 

minority class areas become more condensed while sparsely 

populated minority class areas remain sparse. This behavior 

of SMOTE manages to address the between-class imbalance 

(imbalance between multiple classes), while the within-class 

imbalance (multiple dense or sparse regions of the same 

class) is ignored. Another drawback of the SMOTE 

algorithm is the generation of noisy samples. If a new 

synthetic sample is generated between an existing noisy 

sample and its nearest neighbor, there is a high probability 

that the newly generated sample will also be noisy. This is 

because the SMOTE algorithm has no notion of overlapping 

class regions when generating synthetic samples [1][4]. 

Throughout the years, the SMOTE algorithm has been 

modified to address its drawbacks and limitations.   

In [14], Batista et al. apply SMOTE to oversample the 

minority class, followed by applying Tomek Links to 

increase the class separation near the decision boundary. The 

authors state that the class clusters are sometimes ill-defined 

during oversampling as the minority class samples may enter 

the majority class area and that interpolating minority class 

instances can enlarge the minority cluster, introducing noisy 

minority samples deep in the majority area, which is harmful 

and can lead to overfitting. Tomek Links act as a data 

cleaning mechanism in this technique, where overlapping 

majority and minority class samples are removed to form 
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well-defined class clusters. This can be considered a hybrid 

technique as it applies both oversampling and undersampling 

to the dataset.   

The research work presented in [15] is another hybrid 

technique where extensive data cleaning based on 

misclassifications is applied through ENN (Edited Nearest 

Neighbor) on an oversampled dataset. ENN is similar to 

Tomek Links, but it is more aggressive as it removes any 

sample (majority or minority) from the training set that its 

three nearest neighbors misclassify, creating more 

distinguishable class spaces with clear separation along the 

decision boundary. The study also states that oversampling 

strategies lead to more accurate classifiers than strategies 

derived through undersampling. 

Geometric SMOTE [16] is another extension of SMOTE 

that generates synthetic samples near selected minority class 

samples in a geometric region instead of linear interpolation. 

While this selected region is a hyper-sphere in its default 

configuration, G-SMOTE deforms it to a hyper-spheroid and 

eventually to a line segment, simulating the SMOTE process 

in the last instance. Geometric SMOTE addresses two main 

issues in SMOTE: generation of noisy samples and 

generation of samples that belong to the same sub-cluster. 

The above issues are addressed by identifying safe areas to 

synthesize new samples and varying the number of minority 

samples generated. The authors claim that the ability of G-

SMOTE to produce a variety of synthetic minority data in 

safe regions of the input space while aggressively boosting 

their diversity is the rationale for its performance gain.  

Safe-Level-SMOTE [17] follows a similar approach to 

SMOTE but considers the nearby majority class samples 

when generating synthetic minority class samples. Safe 

levels are computed using nearest neighbor minority samples, 

and synthetic samples are generated such that they lie closer 

to minority class samples (safe area). The study tries to 

address the overgeneralization problem encountered by 

SMOTE due to arbitrary generalization of the minority class 

territory neglecting the majority class, which can lead to an 

increased likelihood of class mixing in the case of highly 

skewed class distributions. 

Borderline-SMOTE [18] is another variation of SMOTE 

that generates synthetic minority class samples only within 

the decision boundary that separates the classes. In contrast 

to SMOTE, Borderline-SMOTE identifies minority class 

samples that lie within the vicinity of the majority class 

samples and prevents the generation of noisy synthetic 

samples based on those. The authors declare that most 

classification algorithms strive to understand the boundaries 

of each class as precisely as possible during the training 

process to obtain a better prediction, making the samples far 

from the borderline less significant compared to the samples 

that lie within the vicinity of the class borders. Furthermore, 

the study presents two versions of Borderline-SMOTE, 

Borderline-SMOTE1, which generates new synthetic 

samples between borderline minority samples and its K-

nearest minority neighbors, and Borderline-SMOTE2, which 

generates new synthetic samples between borderline 

minority samples and its K-nearest minority as well as K-

nearest majority neighbors. 

ADASYN [19] is a density-based oversampling technique 

where the density of minority samples in a neighbourhood is 

considered when generating new synthetic minority class 

samples. The main intuition of ADASYN is to utilize a 

density distribution as a criterion to determine the number of 

new synthetic samples that should be generated for each 

minority sample. The density distribution considers the 

learning difficulty of each of the minority class samples and 

generates more synthetic samples around samples that are 

more difficult to learn than those that are simpler to learn. 

Even though ADASYN is capable of enhancing hard-to-

learn minority sample areas, it is sensitive to outliers 

because of the possibility of misinterpreting noisy samples, 

which usually occur in low densities, as harder-to-learn 

samples, associating them with higher weights. A summary 

of SMOTE and its variants elaborated above are presented in 

Table I. 

When examining the process in which the aforementioned 

methods have approached the problem, it is evident that they 

are focused on balancing the number of samples in the 

dataset classes. The imbalance between the dataset classes 

that split them into majority and minority classes is called 

the between-class imbalance. By default, all the resampling 

techniques are designed to address the between-class 

imbalance through oversampling, undersampling, or hybrid 

sampling. However, when comparing with vanilla SMOTE, 

it can be observed that most of the above techniques attempt 

in refining the output of the SMOTE algorithm by regulating 

the areas of sample generation and eliminating noisy 

synthetic samples to preserve the decision boundary that 

separates the classes. 

The samples near the decision boundary undoubtedly 

represent the most crucial samples for any classification task. 

Despite the importance of the decision boundary, as depicted 

in Fig. 3 (B), the samples generated near the boundary 

through oversampling often tend to distort the class 

separation, generating noisy samples that overlap with the 

majority class samples. The reason for the generation of 

noisy samples in the decision boundary is caused by the use 

of the same sample generation strategy throughout the data 

space, which is not designed to preserve the decision 

boundary. The oversampling techniques mentioned above 

address this issue and emphasize preserving the decision 

boundary when generating new synthetic minority class 

samples. 

Fig. 3 (A) Occurrence of multiple disjuncts of minority class samples 

with varying densities. (B) Noisy minority class samples distort the decision 
boundary by overlapping with majority class samples 

 

Moreover, when considering real-life datasets, there can 

also be instances where multiple dense or sparse clusters of 

minority class samples are present within the data 

distribution, as illustrated in Fig. 3 (A). 

The existence of multiple disjuncts of minority class 

samples is referred to as the within-class imbalance, and it 

can lead to an extreme lack of representation of crucial 

minority class features. Oversampling techniques that 

randomly select minority samples to generate new synthetic 

samples, such as SMOTE, fail to resolve the within-class 

imbalance, resulting in a skewed minority class distribution 
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[20]. Therefore, it is important to address both between-class 

and within-class imbalances when addressing the data 

imbalance. The simultaneous removal of both these 

imbalances minimizes the classifier bias toward bigger sub-

clusters by decreasing the influence of the bigger sub-cluster
error on the total error [21].  

 

Further looking into oversampling techniques reveals 

another set of studies that use a different strategy to deal 

with the data imbalance problem. 

MWMOTE [22] is a popular SMOTE-based 

oversampling technique. It first locates hard-to-learn 

minority class samples (samples near the decision boundary) 

using the majority class samples near the decision boundary 

and uses the Euclidean distance from these nearest majority 

class samples to assign them weights. This weighing 

mechanism ensures that higher weights are assigned to 

samples closer to the decision boundary than others. The 

authors highlight the fact that the presence of within-class 

imbalance and small disjuncts of the minority class can lead 

to performance degradation in classifiers and, therefore, 

similar to the weighing of hard-to-learn minority samples 

near the decision boundary, the samples of smaller clusters 

are given greater weights to reduce the within-class 

imbalance. Finally, a modified hierarchical clustering 

approach is used to create synthetic samples from the 

weighed minority class samples making sure the generated 

samples reside  within  the  minority  class  region  to  avoid noisy 
sample generation.

 

 

Cluster SMOTE [23] uses K-means to cluster the minority 

class and applies SMOTE within the identified clusters. This 

approach makes sure that the generated synthetic samples 

always lie inside naturally occurring clusters of the minority 

class samples. The study claims that the existence of a small 

number of minority class samples is challenging when 

forming decent class borders, and addressing this limitation 

by accurate class region and border definition would enable 

trivial classification. Since these class regions are unknown 

and impossible to infer through given data, K-means is used 

to approximate the minority region, followed by applying 

SMOTE to each identified cluster. This study is explicitly 

designed to address the imbalance in network intrusion 

datasets and only uses two intrusion datasets to evaluate. 

[24] presents a clustering-based oversampling technique 

designed to address the within and between class imbalances, 

Reference Approach Summary 

[12] 
Oversampling: combines

 

random

 

sampling

 

with

 

the

 K

 

nearest

 

neighbor

 

algorithm.

 

 

- A

 

minority

 

class

 

sample

 

is selected

 

at

 

random. 

 

- A

 

synthetic

 

sample

 

is

 

generated

 

on

 

the

 

line

 

that

 

joins

 

the

 

random

 minority

 

sample

 

and

 

its

 

nearest

 

neighbor. 

[14] 
Hybrid

 

Sampling:

 

refines

 

the

 

output

 

of

 

SMOTE

 

by

 applying

 

Tomek

 

Links. 

- Applies

 

SMOTE

 

followed

 

by

 

Tomek

 

Links. 

 

- Tomek

 

Links

 

remove

 

overlapping

 

majority

 

and

 

minority

 

samples. 

 

- Increase

 

the

 

class

 

separation

 

near

 

the

 

decision

 

boundary. 

[15] 
Hybrid

 

Sampling:

 

refines

 

the

 

output

 

of

 

SMOTE

 

by

 applying

 

Edited

 

Nearest

 

Neighbor

 

(ENN). 

- Extensive

 

data

 

cleaning

 

based

 

on

 

misclassification. 
 

- Removes

 

any

 

sample

 

that

 

its

 

3

 

nearest

 

neighbors

 

misclassify. 

 

- ENN

 

is

 

more

 

aggressive

 

than

 

Tomek

 

Links. 

[16] 
Oversampling:

 

modifies

 

the

 

sample

 

generation

 strategy

 

of

 

SMOTE

 

by

 

identifying

 

safe

 

regions. 

- Generates

 

samples

 

in

 

a

 

geometric

 

region

 

instead

 

of

 

linear

 interpolation. 
 

- Prevents

 

the

 

generation

 

of

 

noisy

 

samples

 

by

 

identifying

 

safe

 

areas

 and

 

varying

 

the

 

number

 

of

 

samples

 

generated. 

[17] 
Oversampling: modifies

 

the

 

sample

 

generation

 strategy

 

of

 

SMOTE

 

by

 

computing

 

safe

 

levels. 

- Considers

 

nearby

 

majority

 

class samples

 

when

 

generating

 

new

 synthetic

 

minority

 

class

 

samples. 
 

- Safe-levels

 

computed

 

using

 

nearest

 

neighbor

 

minority

 

samples. 

[18] 
Oversampling: modifies

 

SMOTE

 

to

 

generate

 

new

 samples

 

only

 

within

 

the

 

decision

 

boundary. 

- Generates

 

minority

 

class

 

samples

 

only

 

within

 

the

 

decision

 boundary. 

 

- Ignores

 

minority

 

class

 

samples

 

that

 

lie

 

within

 

the

 

majority

 

class

 samples

 

during

 

synthesis. 

[19] 

Oversampling: uses

 

the

 

density

 

around

 

minority

 class

 

samples

 

to

 

determine

 

the

 

number

 

of

 

synthetic

 samples

 

to

 

be

 

generated. 

- Density

 

of

 

minority

 

class

 

samples

 

in

 

a

 

neighborhood

 

is

 

considered

 when

 

generating

 

new

 

samples. 
 

- Heavily

 

sensitive

 

to

 

outliers.

 

 

TABLE I
 

SUMMARY OF SMOTE AND ITS VARIANTS
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avoiding the generation of noisy synthetic samples. Initially, 

the algorithm clusters the input space using K-means 

clustering and filters out the cluster with a higher number of 

minority samples for oversampling. The number of synthetic 

samples to be generated is then dispersed, with more 

samples being assigned to clusters with a low density of 

minority samples. Finally, SMOTE is used to obtain the 

required ratio of minority and majority samples in each of 

the filtered clusters. The authors rationalize cluster-based 

oversampling as one of the strategies that aim to minimize 

the within-class imbalance while also reducing the between-

class imbalance, facilitating the oversampling technique to 

identify the most effective areas of the input space to 

generate synthetic samples.  

DBSMOTE [25] is another density-based oversampling 

technique that uses the DBSCAN algorithm to partition the 

minority class samples. SMOTE is used to generate 

synthetic samples between the shortest path that join 

minority class samples with a pseudo-centroid of a minority 

cluster, avoiding the generation of outliers or noisy samples. 

As a result, synthetic samples are generated in such a way 

that they are dense around the centroid and are sparse further 

away from the centroid. The authors claim that a real-world 

dataset with proximate data clusters can be described by a 

normal distribution, dense at the centroid and sparse towards 

the boundary and that a classifier can correctly identify 

samples near the centroid as it identifies the area around the 

centroid as a class. Based on the above observations, 

DBSMOTE is designed to oversample the minority class 

area around the centroid because it is too sparse to be 

recognized by a classifier. 

CURE-SMOTE [26] works by clustering the minority 

class samples using the CURE hierarchical clustering 

algorithm followed by noise and outlier removal. It then 

randomly generates synthetic minority class samples along 

the line segment that joins representative points and the 

center point. In CURE hierarchical clustering, each sample 

is assumed to represent a cluster, where local clustering is 

used to combine these samples to form the clusters present 

in the input space. The study justifies CURE hierarchical 

clustering, stating that it is more efficient for large datasets 

with varying shapes of data distributions than K-means 

clustering, which is only suitable for spherically distributed 

datasets. Further, it is stated that the combination of 

clustering and merging operations tends to eliminate noise 

with reduced complexity as it eliminates the need to remove 

the furthest created synthetic samples (noisy samples) after 

applying SMOTE. 

A-SUWO (Adaptive Semi-Unsupervised Weighted 

Oversampling) [27] and its improved version, IA-SUWO 

[28], cluster the minority class samples using a semi-

unsupervised hierarchical clustering approach and use the 

classification complexity and cross-validation of each sub-

cluster to decide the optimal size to oversample. Both A-

SUWO and IA-SUWO aim to generate synthetic samples 

near minority class instances that lie close to the decision 

boundary with lower densities. 

[29] presents a probability-based cluster expansion 

oversampling technique that uses a model-based clustering 

mechanism (MCLUST) to identify sub-clusters present in 

the dataset. The method also uses K-Nearest Neighbor based 

noise removal prior to clustering to reduce the oversampling 

of noisy samples and equal posterior probability after 

clustering to identify the boundary of the identified sub-

clusters. Finally, synthetic minority class samples are 

generated in the enclosed region of the class separating 

boundary. As suggested by the authors, the main goal of this 

technique is to assign equal weight to all sub-clusters of the 

minority class that would otherwise be overlooked due to the 

skewness of the distribution. The cluster/density based 

oversampling techniques elaborated above are summarized 

in Table II. 

In order to address the within-class imbalance, it is 

necessary to identify different regions within the data space 

where oversampling is effective. The above studies show 

that clustering and density-based techniques are popular 

approaches that researchers use to identify such areas. After 

the identification of significant areas to oversample, it is 

possible to use traditional oversampling techniques to 

generate synthetic samples. The clustering-based 

oversampling techniques introduced above emphasize the 

importance of addressing the within-class imbalance when 

formulating oversampling techniques. 

A. Oversampling High-Dimensional Data 

Further inspecting the aforementioned oversampling 

techniques that address the data imbalance, it is evident that 

most of the techniques are based on clustering algorithms 

such as K-means, DBSCAN, and hierarchical clustering, 

combined with heuristics based on Euclidean distance. 

Therefore, the majority of these approaches rely on heuristic 

methods that apply in two-dimensional space (Euclidean 

space) when generating synthetic data, whereas practical 

scenarios often consist of high-dimensional data [30]. 

Additionally, when the number of features in the dataset 

(dimensionality of data) increases, the data points become 

sparser or farther apart (Fig. 4), making the nearest neighbor 

problem ill-defined [31]. This behavior is called the “curse 

of dimensionality” [32]. As a result, in higher dimensional 

space, the use of heuristics based on Euclidean distance 

becomes ineffective, and the assumption of well-defined 

clusters fails, generating noisy synthetic samples. 

A common strategy that can be adopted when formulating 

oversampling techniques that use clustering mechanisms and 

heuristics based on Euclidean distance is to reduce the 

dimensionality of the original input space. Principal 

Component Analysis (PCA), Multidimensional Scaling 

(MDS), and Self-Organizing Maps are some common 

dimensionality reduction techniques practitioners use. In 

recent years, Self-Organizing Maps [33] based resampling 

techniques have been extensively explored in the community. 

Self-Organizing Map based Oversampling (SOMO) [30] 

generates a clustered two-dimensional representation of the 

input space by applying the SOM algorithm. Clusters are 

filtered to perform oversampling by calculating the density 

of minority class samples in each cluster. SMOTE is applied 

to generate synthetic minority class samples within the 

filtered clusters and between neighboring clusters, 

addressing both within and between class imbalances. The 

authors have identified and addressed a few inefficiencies of 

existing oversampling techniques, namely, the generation of 

noisy instances that infiltrate the majority region, the 

generation of duplicate samples, and the use of heuristics 

based on the assumption that the input space has a simple 

manifold structure. SOMO is capable of generating more 

effective synthetic samples by investigating the manifold 
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structure of the input space, exploiting the topology-

preserving property of Self-Organizing Maps. 

[1] proposes an imbalance dataset resampling technique 

by combining Self-Organizing Maps and Genetic 

Algorithms. The technique uses two Self-Organizing Maps 

to perform oversampling on the minority class and 

undersampling  on the majority  class . The  clusters  derived 

from  Self - Organizing  Maps  identify  the  reg ions  where 
majority   and  minority class samples are dense. The filtered 
clusters are  then   utilized   to  derive  a  set  of   rankings 

 

 

among  majority  and  synthetic  minority  samples , which 

evaluate the positive impact of their removal or inclusion in 

the training  data, respectively . The ideal  rates  of exclusion 

and  inclusion  for  each  accepted  criterion  are  obtained 

using a Genetic  Algorithm  that considers  the

 

performance 

of a random classifier  for a given training  dataset  in the 

context  of imbalance  classification  via the fitness function . 
The authors claim  that  the  capabilities  of  Self-Organizing  
Maps  to preserve  the distribution  and topology  of the input 
data   lead    to   the   conservation   of   the   natural   spatial

Reference

 

Approach

 

Summary

 

[22]

 

Oversampling:

 

combines hierarchical clustering with 
SMOTE to address both within and between class 

imbalances.

 -

 

Identifies hard-to-learn minority class samples and assigns them 

weights based on the nearest majority class samples.

 
 

-

 

Makes sure the generated samples fall into some minority class 

cluster

 

[23]

 

Oversampling: uses K-means

 

to approximate the 

minority region, followed

 

by applying SMOTE to 
each identified cluster.

 
-

 

Uses K-means to cluster the minority class and applies SMOTE 
within the identified clusters.

 

 

-

 

Makes sure generated samples lie inside naturally occurring clusters.

 

[24]

 

Oversampling: uses K-means to identify and filter 
clusters with high minority class density, followed 

by applying SMOTE. 

 -

 

Uses K-means to identify clusters and assigns weights based on the 

minority class density in each cluster.

 
 

-

 

Generates more samples in clusters with low minority class 

densities.

 

[25]

 

Oversampling: combines the DBSCAN algorithm 

with SMOTE to generate synthetic samples such that 
the dataset is

 

dense at the centroid and sparse 

towards the boundary.

   -

 

Uses the DBSCAN algorithm to partition the minority class 

samples.

 
 

-

 

Generate

 

synthetic samples between the lines that join minority 

class samples with a pseudo-centroid of a minority cluster.

 

[26]

 

Oversampling:

 

combines CURE hierarchical 
clustering with noise and outlier removal so that the 

samples generated after using SMOTE are

 

more 

precise. 

 -

 

Uses CURE hierarchical clustering algorithm followed by noise and 
outlier removal.

 

 

-

 

Addresses datasets that have clusters of varying shapes and sizes.

 

[27][28]

 

Oversampling:

 

uses a semi-supervised hierarchical 
clustering algorithm

 

to generate synthetic samples 

around

 

minority class instances that lie close to the 
decision boundary with lower densities.

 -

 

Clusters the minority class using a hierarchical clustering approach.

 
 

-

 

Oversample size is decided from classification complexity and 

cross-validation of each sub-cluster.

 

[29]

 

Oversampling:

 

combines a model-based clustering 
mechanism with KNN-based noise removal.

 
-

 

Uses MCLUST to identify sub-clusters present in the dataset.

 

 

-

 

The Goal is to assign equal weights to all minority class sub-clusters 

that would otherwise be overlooked due to skewness of the 

distribution.

 

TABLE II

 

SUMMARY OF CLUSTER/DENSITY BASED OVERSAMPLING TECHNIQUES

 

Fig. 4

 

Data points

 

become sparser

 

as dimensionality increases [34].
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 relationship  among  samples  at the  cluster  level , and  the 

optimization  capabilities  of Genetic  Algorithms  result  in 

maximization  of  classifier  performance , improving  the 

overall resampling operation.  

[35] uses a customized SOM-SMOTE algorithm to 

address the imbalance in clutter data when addressing the 

clutter suppression in search radars. The authors have 

identified two limitations in the SMOTE algorithm, random 

sample selection and ignoring the data distribution during 

interpolation, resulting in samples that are not representative 

enough. The study addresses the above limitation using a 

combined Self-Organizing Map and SMOTE algorithm that 

clusters the minority class samples into several subsets using 

a Self-Organizing Map and interpolates synthetic samples 

around the cluster centers using SMOTE. The authors also 

highlight the ability of Self-Organizing Maps to preserve the 

topology of higher dimensional clutter data, resulting in 

synthetic samples with distribution characteristics similar to 

original data. 

From the above studies, it can be assumed that the ability 

of Self-Organizing Maps to address the within-class 

imbalance as a clustering algorithm, along with the ability to 

reduce the dimensionality of data while preserving the 

topology of the input space, are the main reasons for its 

widespread popularity as an excellent candidate to address 

the data imbalance problem. 

III. DISCUSSION 

When analyzing oversampling techniques that address the 

class imbalance problem, it is possible to identify key factors 

that contribute to the success of an oversampling technique. 

Throughout the literature, it can be observed that every 

oversampling technique attempts to adopt one or more of 

these factors during its strategy formulation.  

Considering the variations of the SMOTE algorithm that 

have been introduced as improved versions of vanilla 

SMOTE [12], it is evident that most of the proposed 

techniques such as [14], [15], Safe-Level-SMOTE [17], and 

Borderline-SMOTE [18] try to preserve the boundary region 

that separates the minority and majority classes. Compared 

to the vanilla SMOTE, the higher classification accuracies of 

these techniques demonstrate the importance of preserving 

the boundary region when formulating an oversampling 

technique. 

Further exploring contemporary oversampling techniques, 

it can also be observed that clustering-based approaches are 

more popular among researchers. This is because, apart from 

preserving the boundary region, it is also essential to address 

the within-class imbalance in the dataset (all the resampling 

techniques address the between-class imbalance by default). 

Clustering algorithms do not necessarily address the within-

class imbalance unless they are explicitly designed to 

address it. 

Based on the above observations, it is possible to identify 

three constraints that need to be simultaneously satisfied 

when formulating an oversampling technique to generate an 

optimal resampled dataset. 

1) Addressing the between-class imbalance: The between-

class imbalance represents the typical imbalance scenario 

where there is a significant difference between the number 

of samples in the dataset classes. All the resampling 

techniques attempt to address the between-class imbalance 

by oversampling, undersampling, or hybrid-sampling. There 

is no optimal imbalance ratio that needs to be reached when 

resampling an imbalanced dataset. However, [6] states that a 

35:65 class distribution can achieve a higher classification 

performance compared to a 50:50 class distribution when the 

classes are heavily imbalanced. This is an area that is still 

being investigated. 

2) Addressing the within-class imbalance: Within-class 

imbalance demonstrates the imbalance within the minority 

class due to the existence of multiple disjuncts of minority 

class samples with varying densities (Fig. 3A) that can lead 

to an extreme representation deficiency of essential 

characteristics of the minority class. The majority of the 

oversampling techniques that randomly select minority class 

samples to generate new synthetic samples, such as SMOTE, 

fail to address the within-class imbalance, leaving the 

minority class distribution skewed. When analyzing 

oversampling techniques capable of addressing the within-

class imbalance, it can be observed that they are based on 

clustering approaches. The use of clustering approaches is an 

obvious design choice as they provide the capability to 

analyze the spatial location of the minority class to 

determine the suitable areas to generate new synthetic 

samples. 

3) Preserving the boundary region when generating 

synthetic samples: The boundary region represents the area 

that separates two or more classes. As mentioned previously, 

the most crucial samples in any classification task are the 

samples that reside near the boundary region. When 

considering oversampling techniques, the synthetic samples 

generated near the decision boundary often distort the class 

separation, generating noisy samples that overlap with the 

majority class samples. This behavior is caused due to the 

use of the same sample generation strategy throughout the 

data space, which is not designed to preserve the decision 

boundary. However, studies such as [14], [15], [16], [17], 

and [18] emphasize the importance of preserving the 

boundary region when generating new synthetic samples. 

The decision boundary preservation can be achieved either 

by using a separate sample generation strategy near the 

boundary region or by refining the synthetically generated 

samples to remove noisy samples generated near the 

decision boundary. 

Even though there are oversampling techniques that 

address different combinations of the above three constraints, 

almost all the proposed oversampling techniques do not 

address all three constraints together.  

Aside from addressing the constraints mentioned above 

when formulating an oversampling approach, it is also 

preferable to pay special attention to the curse of 

dimensionality. As elaborated in the previous section, many 

of the currently available oversampling approaches are 

unable to handle the curse of dimensionality, resulting in 

poor performance on high dimensional datasets. We believe 

addressing the above constraints along with a proper 

clustering algorithm or a dimensionality reduction technique 

is a promising research avenue to investigate further. 

IV. CONCLUSION 

The data imbalance problem is one of the most well-

defined problems in the Machine Learning domain that has 

been addressed throughout the past decades. With the 

emergence of Big Data, traditional techniques to address the 

data imbalance problem have been challenging, and the 
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necessity of new and improved techniques to address the 

imbalance has created promising research avenues in many 

practical domains. 

This paper reviews numerous research work that has 

attempted to address the data imbalance problem by 

oversampling the minority class samples. We identify 

several subsets of oversampling techniques and highlight 

different approaches adopted by them to discover suitable 

samples/areas to oversample and strategies used to generate 

new synthetic samples. Based on these studies it is evident 

that some oversampling techniques focus on preserving the 

decision boundary by refining the oversampled output or by 

restricting sample generation in certain areas. It is also 

possible to identify studies that use clustering and density-

based techniques to prevent the generation of noisy samples 

and alleviate the occurrence of disjuncts of minority class 

samples with varying densities. Furthermore, the review also 

presents the challenges faced by traditional oversampling 

techniques on high-dimensional data and suggest different 

techniques that can be utilized to address them. 

By analyzing various strategies adopted in the scientific 

community for oversampling, we have identified three key 

constraints that need to be satisfied when developing state-

of-the-art oversampling techniques, 

1) Addressing the between-class imbalance: represents 

the typical imbalance scenario where there is a significant 

difference between the number of samples in the dataset 

classes. 

2) Addressing the within-class imbalance: represents the 

imbalance within the minority class due to the existence of 

multiple disjuncts of minority class samples with varying 

densities. 

3) Preserving the boundary region when generating 

synthetic samples: the boundary region represents the area 

that separates two or more classes. It is required to make 

sure that the synthetic samples do not distort the decision 

boundary and overlap with samples in other classes. 

Along with the above constraints, being attentive to the 

curse of dimensionality and addressing it would lead to a 

more optimal resampling. Based on these findings, 

researchers can develop more robust oversampling 

techniques in the future. 
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