
Abstract: Structural design of an artificial neural network 
(ANN) is a very important phase in the construction of 
such a network. The selection of the optimal number 
of hidden layers and hidden nodes has a significant 
impact on the performance of a neural network, though 
typically decided in an adhoc manner. In this paper, the 
structure of a neural network is adaptively optimised by 
determine the number of hidden layers and hidden nodes 
that give the optimal performance in a given problem 
domain. Two optimisation approaches have been 
developed based on the Particle Swarm Optimisation 
(PSO) algorithm, which is an evolutionary algorithm 
which uses a cooperative approach. These approaches 
have been applied on two well known case studies in the 
classification domain, namely the Iris data classification 
and the Ionosphere data classification.

The obtained results and comparisons done with 
past research work has clearly shown that this method 
of optimisation is by far, the best approach for adaptive 
structural optimisation of ANNs.

Keywords: neural networks, particle swarm   optimization, 
weight adjestment, hidden layer adjestment.

INTRODUCTION

Artificial Neural Networks (ANNs) which have been 
inspired by biological neural networks, are used specially 
in imitating many qualities seen in human beings like 
identifying objects and patterns, making decisions 
based on prior experiences and accumulated knowledge, 
prediction of future events based on past happenings, 
etc.. The very fact that the human brain is very efficient 
in carrying out these actions is mainly attributable 
to its complex and intricate, but very effective neural 
network structure. Besides the learning algorithm of 
a specific neural network, constructing an effective 
neural network structure is perhaps the single most 
challenging aspect in the designing of an ANN. This is 
due to the high cohesiveness between the performance 
of a neural network and the structure of that particular 
neural network. Until recently the structure of a neural 
network was defined by intuition or based on empirical 
suggestions. As far as the number of hidden layers were 
concerned a theoretical result by Horniket alstated in 
[2], as ‘..a feed forward neural network with one layer 
is enough to approximate any continuous non linear 
function arbitrarily well on compact interval, provided 
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that a sufficient hidden neurons are available’, may have 
had an influence in this way of thinking.

In the recent years, Particle Swarm Optimisation 
(PSO) algorithm, which is a simple, easy to implement 
but highly effective evolutionary algorithm, has also 
been used for the purpose of ANN evolution. According 
to the best of our knowledge, PSO has not been used 
thus far, to evolve a full neural network structure, i.e., 
both the hidden layers and the number of nodes in a 
particular hidden layer, presumably due to the earlier 
mentioned theoretical result. However, in our research 
we show that it is indeed possible to come up with 
an adaptively optimized number of hidden layers for 
the neural network which will also yield improved 
classification results. As such, this research has strived 
to come up with an optimal structure for an ANN by 
applying the PSO algorithm, on a network used in a 
particular problem domain. 

The paper is organized as follows: In section 
II, a brief overview of feed-forward neural networks 
and Particle Swarm Optimisation is given, section III 
is related work, section IV discusses the design and 
implementation aspects, section V presents the results 
and section VI gives the conclusion and future work that 
can be carried out on the optimisation approaches.

OVERVIEW OF ANN AND PSO

The ANNs considered within this research are Multilayer 
Feed-Forward Neural Networks and the given sample 
problems are solved through supervised learning using 
back propagation.

Importance of the Architecture of an ANN

The architectural/topological design of the ANN has 
become one of the most important tasks in ANN research 
and application. It is known that the architecture of an 
ANN has significant impact on a network’s information 
processing capabilities. Given a learning task, an ANN 
with only a few connections and linear nodes may not be 
able to perform the task at all due to its limited capability, 
while an ANN with a large number of connections and 
nonlinear nodes may overfit noise in the training data and 
fail to have good generalization ability [1]. Up to now, 
architecture design is still very much a human expert’s 
job. It depends heavily on the expert experience and a 
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tedious trial-and-error process. Even though ANNs 
are easy to construct, finding a good ANN structure 
is a very time consuming process [2]. As there are no 
fixed rules in determining the ANN structure or its 
parameter values, a large number of ANNs may have to 
be constructed with different structures and parameters 
before determining an acceptable model. Against this 
background, a logical next step is the exploration of 
more powerful techniques for efficiently searching the 
space of network architectures [3].

PSO

Particle Swarm Optimisation (PSO) is a population 
based stochastic optimisation technique developed by  
James Kennedy  and Russell Eberhart in 1995, inspired 
by social behavior of bird flocking or fish schooling. 
PSO introduces a method for optimisation of continuous 
nonlinear functions [4],[5]. This algorithm is simple in 
concept, computationally efficient and effective on a 
variety of problems.

PSO is initialized with a group of random 
particles (solutions) and then searches for optima by 
updating generations. In every iteration, each particle is 
updated by following two “best” values. 

The personal best solution (fitness) it has 
achieved so far (measured using a fitness 
function). This value is called pbest. 

The best value obtained so far by any particle 
in the population. This best value is a global 
best and called gbest.

Apart from these values, when a particle takes 
part of the population as its topological neighbors, the 
best value is a local best and is called lbest.

After finding the above parameters, the particle 
updates its velocity and position with following equations 
(1.1) and (1.2) [4].

v[t+1] = v[t] + c1* rand( ) * ( pbest[t]- position[t] ) + 
	               c2 * rand( ) * ( gbest[t] - position[t] )    1.1 
                             position[t+1] = position[t] + v[t]	1.2

 
	 v[t] and v[t+1]is the particle velocity, position[t] 
is the current particle (solution). pbest[t] and gbest[t] 
are defined as stated before. rand( ) is a random number 
between (0,1). c1, c2 are learning factors (usually c1 = 
c2 = 2).  The PSO algorithm [5] can be implemented 
by incorporating the above equations. The swarm size 
is a critical parameter – too few particles might cause 
the algorithm to become stuck in local minima, while 
too many particles will slow down the algorithm. The 
optimal number of particles per swarm will also depend 
on the function given in [6].

Advantages of the PSO approach

The considerable adaptability of PSO to variations 
and hybrids is seen as a strength over other robust 
evolutionary optimisation mechanisms, such as Genetic 

1.

2.

Algorithms (GA). Normally, a stochastic hill-climber 
risks getting stuck at local maxima, but the stochastic 
exploration and communication of the swarm overcomes 
this [7]. The interaction of the particles in the swarm 
creates a very good balance between straying off the 
course and staying close to the optimal solution.

The PSO algorithm is easy to implement because 
it is expressed in a very few lines of code, and requires 
only specification of the problem and a few parameters in 
order to solve it [4]. Another advantage is that PSO takes 
real numbers as particles; hence eliminating the need of 
a special encoding scheme or the need to use special 
genetic operators. Compared with other evolutionary 
algorithms such   as   GA,   PSO   algorithm   possesses   
attractive properties such as memory and constructive 
cooperation between individuals. All particles in a PSO 
population carry memory (in the form of the personal 
best value it has reached so far), whereas in a GA if an 
individual is not selected the information contained by 
that individual is lost. Because there are no selection 
and crossover operation in PSO, each individual in an 
original population has a corresponding partner in a new 
population. It can avoid the premature convergence and 
stagnation in GAs to some extent [9]. 

The cooperative approach followed by PSO 
is seen as the biggest advantage over the competitive 
approach taken by the GAs since, in cooperative 
situations, others are depending on you to succeed but 
in competitive situations, others hope to see you fail. So 
PSO is a cooperative approach to optimisation rather than 
an evolutionary approach which kills off unsuccessful 
members of the search team. It is in the collective sharing 
of knowledge that solutions are found.

RELATED WORK

ANN weight training using PSO

Adjusting weights to train a feed-forward multilayer 
ANN has been one of the earliest applications of 
PSO. According to Kennedy and Eberhart who are 
the developers of the PSO algorithm, a particle swarm 
optimizer could train NN weights as effectively as the 
usual error backpropagation method [4].  One of their 
first experiments involved training weights for a three-
layer ANN solving the exclusive-or (XOR) problem. 
They have also used a particle swarm optimizer to train 
a neural network to classify the Fisher Iris Data Set 
[10]. Intriguing informal indications are that the trained 
weights found by particle swarms sometimes generalize 
from a training set to a test set better than solutions found 
by gradient descent method.

Gudise and Venayagamoorthy [8], have shown  
that feed-forward  neural network weights converge faster 
with the PSO than with the back propagation algorithm. 
In order to compare the training capabilities of back 
propagation and PSO algorithm, a non-linear quadratic 
equation, y = 2x2 + 1, with data points (patterns) in range 
(- 1 , 1) has been presented to the feed-forward neural 
network. Based on the experimental results, the number 
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of computations required by each algorithm shows that 
PSO requires less number of iterations to achieve the 
same error goal as compared to the back propagation. 
Thus, PSO is better for applications that require fast 
learning algorithms. An important observation made 
is that when the training points are fewer, the ANN 
learns the nonlinear function with six times lesser 
number of computations with PSO than that required 
by the back propagation. Moreover, the success of back 
propagation depends on choosing a bias value unlike 
with PSO. It is also stated that the concept of the PSO 
can be incorporated into back propagation algorithm to 
improve its global convergence rate. More recent work 
in this regard is in [18], [19].

Architecture evolution together with weight training 
of  ANNs

Direct application of PSO to evolve the structure of an 
ANN has been done by Zhang, Shao and Li[9]. Both 
the architecture and the weights of ANNs are adaptively 
adjusted according to the quality of the neural network.
Recent similar work is also in [16], [17].

ANN Weight Initialization

Apart from complete weight training, PSO has also been 
used to initialize the weights of ANNs. Van den Bergh 
[11] his paper has shown that training performance can 
be improved significantly by using PSO to initialize the 
weights, rather than random initializations.

	He has stated that since the weights in an ANN 
serve as a starting position in error space, from where 
the optimisation algorithms proceed to find a minimum 
in the error space, it is clear that the precise starting 
position can affect the speed and accuracy with which 
the algorithm will find the minimum. By the means of 
two case studies, namely the Ionosphere Classification 
Problem [10] and The Henon Curve problem, it has been 
shown that using PSO to initialize weights will reduce 
the total time needed to train Multi-Layer Perceptron 
networks. But it also mentions that even though PSO can 
be used to train the Multi-Layer Perceptron networks to 
completion, it will seldom be quicker than a mix between 
PSO and gradient-based optimisation techniques.

Other Adaptive Techniques

Eberhart, one of the creators of the PSO algorithm, and 
Xiaohui have evolved not only the network weights 
but also the slopes of the sigmoidal transfer functions 
of hidden and output processing elements using PSO 
[12]. The method is general, and can be applied to 
other transfer functions as well. Flexibility is gained by 
allowing the slopes of the transfer function to be positive 
or negative. A change in sign for the slope is equivalent 
to a change in signs of all input weights. Since the PSO 
process is continuous, neural network evolution is also 
continuous. No sudden discontinuities exist such as 

those that plague other evolutionary approaches.

DESIGN AND IMPLEMENTATION

Initially an association was made between the parameters 
of the PSO and the ANN, in order to construct an 
algorithm which would evolve the architecture of the 
ANN. Since this research involves two parameters 
to be optimized in an ANN, namely the number of 
hidden layers and hidden nodes in each layer, these two 
parameters were mapped to appropriate variables of the 
PSO algorithm.

Association between PSO and ANN

The mapping resulted in the defining of a 1:1 relationship 
between the position variable of a particle in the PSO 
swarm and number of hidden nodes in a layer of an 
ANN. Therefore the number of hidden nodes of each 
hidden layer will be indirectly evolved due to the 
velocity parameter (v) of the PSO algorithm. The number 
of dimensions (the number of times the PSO equations 
should be iterated) was associated with the number of 
hidden layers in each network. Thus when executing the 
loop with the PSO equations, it will iterate through each 
hidden layer corresponding to a network, optimizing the 
number of hidden nodes in each layer. The global best 
value reflects the optimum number of hidden nodes for 
an optimum number of hidden layers. Fig 1 illustrates 
the mapping between the PSO algorithm and ANN.

for I = 1 : to number of particles (m) do

    for J = 1 to number of dimensions (n) do         number of hidden layers in ANN

     R1 = uniform random number 

     R2 = uniform random number

     v[I][J] = v[I][J] + c1*R1*(pbest[I][J]-position[I][J] + c2*R2*(gbest[J]-position[I][J])

    position[I][J] = position[I][J] + v[I][J]           number of hidden nodes in a layer

  enddo

enddo

Figure 1:Mapping between PSO and ANN

Optimisation Approaches 

The’ Global Best’ Approach

In this method the position matrix values (number of 
hidden nodes of each hidden layer, in each network) 
were randomly initialized for a population of 30 particles 
(30 networks). This initialization was done subject to the 
constraints of the minimum and maximum number of 
hidden layers allowed in one network (the minimum 
number = 1, the maximum number = 5) and the number 
of particles in a population. Since the random generation 
of position variables corresponding to each network 
allows a value to even be zero, a cleaning process was 
essential to proceed with the evolution. 

This cleaning process was implemented so that 
after the initialization of the number of hidden nodes in 
each network, it will verify the fact that none of the 
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networks have zero hidden nodes (which means that 
there is no hidden layer) in the middle of any network. 
In any case if there is a network which has this initial 
configuration, the cleaning process will remove the 
rest of the hidden layers also (because it is infeasible 
to have a network which has no hidden nodes in a prior 
hidden layer and has hidden nodes in the latter hidden 
layers). After carrying out this cleaning process, it gives 
a resulting population which has different numbers of 
hidden layers.

These networks are then trained and the 
performance is evaluated using the classification 
accuracy percentage of the ANN. The global best value 
of the population is defined according to the highest 
accuracy achieved by a network. The global best variable 
(‘gbest’-which is similar to an array), contains the 
number of hidden nodes in each layer of the ANN which 
has given the best ever performance. The classification 
accuracy percentage is then checked to evaluate whether 
the required performance is reached by any network in 
the population. If so, then the program is terminated. If 
not, the PSO equations will be applied to the parameters 
of the ANN, and new values will be obtained for the 
number of hidden nodes in each layer. This evolution of 
each network was done by considering its personal best 
performance and the global best performance, where the 
latter gives the best performance ever to be reached by 
a network in the whole population. This process also 
can give rise to the cancellation of hidden layers in the 
middle of a network. Therefore the cleaning process will 
be carried out again. Then the above mentioned process 
will carry on iterating until the required performance is 
reached by any network.

	The most important aspect in this method of 
evolution is that one instance which has obtained the 
best ever performance in the whole population, in all 
executed iterations, is kept as a global measurement 
which will directly influence the evolution of all other 
networks in the population. This clearly demonstrates the 
cooperative approach followed by the PSO algorithm. 
Fig 2 illustrates the global best approach using a flow 
chart. 

Since it was observed that the randomly initialized 
population in the above method tend to mostly consist of 
networks belonging to one class (e.g., networks with 5 
hidden layers), it was then decided to create a uniform 
population (i.e., similar number of networks from each 
class) in the first stage of the algorithm. The rest of the 
algorithm was carried out in the same order.

The ‘Local Best’ Approach

In this method, the main difference from the above 
method was that instead of a global best value for the 
whole population, local best values were taken into 
consideration within the PSO algorithm. A local best 
value was defined for each class (e.g., 5 local bests 
corresponding to the networks belonging to the 5 classes 
– 1 hidden layer networks, 2 hidden layer networks, 
….etc). Therefore the evolution of each network was 

done by considering its personal best performance 
and the local best performance values. This gives rise to 
the modification of equation 1.1 as follows.

v[t+1] = v[t]+c1*rand( )*( pbest[t] - position[t] )+	 
	            c2*rand( )*( lbest[t] - position[t] ) 1.3  

	Similar to the earlier situation, pbest gives the 
best configuration ever to be reached by each specific 
network while the lbest gives the best configuration 
within a class (number of hidden nodes in each layer of 
the network which has given the best performance for a 
given class of networks).

                                                            
                                                                 

                                    

Figure 2: Flow chart for ‘Global Best’ approach
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Randomly initialize values for position 
matrix (corresponds to the number of 
hidden nodes in each hidden layer)

Carryout cleaning process

Create ANNs according to the values 
set in the position matrix

Train network and evaluate performance

Define network with best performance 
as the network with optimal structure

Carryout PSO algorithm on each 
position value

Define pbest of each network and gbest 
for whole population

Required 
performance achieved by any

 network?

YES

NO



For each given class above, a local best was 
defined by comparing the performances among the 
members of a class. Then each network in a class will 
try to achieve that specific local best corresponding to its 
class. Therefore a network will never change its number 
of hidden layers during the execution of the algorithm but 
will change the number of hidden nodes in its predefined 
hidden layers. A cleaning process was not needed within 
this approach due to the above reason. Fig 3 illustrates 
the above mentioned local best approach.

Implementation Procedure

The two approaches designed above were implemented 
in Matlab and each method was applied on the selected 
application case studies.

                                                                                   

                           
               

Figure 3: Flow chart for ‘Local Best’ approach

Fishers’ Iris Data Set Classification

This is a multivariate data set introduced by Sir Ronald 
Aylmer Fisher (1936) as an example of discriminant 
analysis [10] . It consists of 50 samples from each of 
three species of Iris flowers. Initially 75 sets of inputs 
(half of the data set) from the Iris data set were fed into 
all networks in the population, as training data. Then 

each network was simulated using the whole data set. 
Based on the classification, the performance measure 
of  classification accuracy percentage was introduce 
into the program. The global best of the population and 
personal bests of each particle was identified using this 
performance measure. 

Ionosphere Data Classification

This deals with the classification of radar returns from 
the ionosphere [10]. “Good” radar returns are those 
showing evidence of some type of structure in the 
ionosphere. “Bad” returns are those that do not; their 
signals pass through the ionosphere. There are 34 
continuous input variables in each data set and a total 
of 351 instances should be classified as either ‘good’ or 
‘bad’ radar return patterns. Since this data set does not 
have an equal number of data sets belonging to each of 
the two classes (there are 225 ‘good’ and 126 ‘bad’ radar 
return patterns), the first 200 data sets were used as the 
training set (The ‘good’ and ‘bad’ data sets are given 
alternatively). This data selection method was followed, 
since past research work which has used this data set 
in ANN classification experiments, have used this same 
method [13]. 

RESULTS AND EVALUATION

Experimental results were obtained for each of the case 
studies with the parameters set as:
Swarm (population) size = 30, c1=c2=2.0
Maximum allowed number of hidden layers = 5
Maximum allowed number of nodes in hidden layer = 10
Number of training epochs = 200

Iris Data Classification results

‘Global Best’ approach

Table 1:	 Results of Iris data set classification by 
Global Best approach

Inst
ance

Optimal 
No. of 
hidden 
layers

No. of hidden nodes in 
each hidden layer Classification 

Accuracy (%)
1st 2nd 3rd 4th 5th

1 2 3 4 0 0 0 97.33
2 2 9 6 0 0 0 97.33
3 2 7 2 0 0 0 97.33
4 2 5 9 0 0 0 97.33
5 3 6 4 4 0 0 97.33
6 2 4 7 0 0 0 97.33
7 2 5 8 0 0 0 97.33
8 3 6 4 7 0 0 97.33
9 2 5 9 0 0 0 97.33
10 3 6 6 5 0 0 97.33

The experimental results in Table I show that 
2 or 3 hidden layers can be considered as the optimal 
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number of hidden layers. In this exercise, the 
classification  accuracy refers to the validation set only. 
The highest achievable classification accuracy using 
this approach was 97.33% (this meant that at least 4 
data sets were misclassified during the classification 
process). An instance  in the above table refers to one 
complete optimisation cycle which  concludes by giving 
the maximum accuracy. All instances in the above table 
have obtained a classification accuracy of 97.33%. This 
might be due to that the Iris data set is considered to be 
a simple classification example, as the three classes are 
(almost) linearly separable [14].

This experimental result can be compared with 
the results obtained by Van den Bergh and Engelbrecht 
[14], who have used the Iris data classification case 
study for their experiments which attempt to improve the 
performance of the basic PSO by partitioning the input 
vector into several sub-vectors. They have heuristically 
chosen an architecture which has 1 hidden layer with 
3 hidden nodes, and with this topology, they have 
achieved only 94% classification accuracy. The ‘Global 
Best’ approach has achieved an accuracy of 97.3% for 
an ANN architecture with 2 hidden layers.

In another research work by Eldracher [15], 
only 93% maximum accuracy has been obtained for 
the Iris data set, by using a heuristically chosen, very 
simple network architecture with no hidden layers and a 
sigmoid transfer function. He has further suggested that 
the classification performance could be increased, if a 
hidden layer is added to the existing network. From the 
results of the ‘Global Best’ approach, it can be clearly 
identified that 2 hidden layered ANN can obtain a higher 
classification accuracy.

By above results, it can also be identified that 
there is a range for the optimal number of hidden 
nodes within a network. An accuracy of 97.3% has 
been achieved in networks which have hidden nodes 
in the range of 7-17 (irrespective of the total number 
of hidden layers). According to the facts given by Tan 
[2], “a Multi-Layer Perceptron network that uses any 
of a wide variety of continuous nonlinear hidden-layer 
transfer functions requires just one hidden layer with ‘an 
arbitrarily large number of hidden neurons’ to achieve 
the ‘universal approximation’ property”. Therefore the 
above mentioned range might be very helpful when 
deciding a value for this ‘arbitrarily large number of 
hidden neurons’.

In order to check the validity of the above 
statement, a single hidden layered ANN was constructed, 
and the classification accuracy and total execution time 
was recorded by varying the total number of hidden 
nodes in the single hidden layer. Fig 4 presents the results 
obtained by setting the following parameter values.
Training epochs (in 1 iteration) = 200
Maximum number of iterations allowed = 10 
Termination condition of an iteration:(if accuracy >= 
97%)

The results in Fig 4, illustrates the fact that 
increasing the number of hidden nodes has a slight 
tendency to increase the accuracy, but only up to a 

certain limit of hidden nodes. From above Fig 4, it can 
be observed that 16 hidden nodes in a single hidden

Figure 4: Average accuracy of ANNs with varying 
number of hidden nodes

layer, has given the maximum average accuracy of 
95.47%. But when the number of hidden nodes were 
further increased, the classification accuracy level begins 
to decrease rapidly. 

When considering the classification accuracy level 
in Table 1, even though all 10 instances have obtained 
an accuracy level of 97.33%, the ANN consisting of two 
hidden layers with 3 and 4 hidden nodes in each layer 
respectively, has the lowest number of weights to be 
trained within this classification problem. This ANN has 
a total weight density (connection density) of 36, i.e., 
from input layer to first hidden layer – 12 weights, first 
hidden layer to second hidden layer – 12 weights, and 
from second hidden layer to output layer – 12 weights. 
This is clearly depicted in Fig 5.

Figure 5: Connection (weight) density of the two 
hidden layered ANN

If only the total number of weights are considered 
as the deciding factor which contributes to the success 
of an ANN’s performance, then it can be deduced that a 
single hidden layered ANN which has a similar number 
of weights (connections) might obtain the same accuracy 
level. Therefore, the single hidden layered ANN with 5 
hidden nodes (= 35 weights) should be able to obtain 
the same accuracy level as that of the ANN shown in 
Figure 5. But the accuracy levels shown in Fig 4 clearly 
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proves that the above deduction is false, because the 
single hidden layered ANN with 5 hidden nodes has 
never achieved a classification accuracy of 97.33%. 
Therefore it is clear that apart from the weights, the 
number of hidden layers in an ANN also has a direct 
impact on the performance of the ANN.

Instead of an ANN with 5 hidden nodes in 
one hidden layer, the ANN with 16 hidden nodes in a 
single hidden layer has obtained a similar classification 
accuracy as that of the ANN shown in Fig 5. Even 
though the single hidden layered ANN with 16 hidden 
nodes has a higher weight density (112 weights), the 
large amount of weights that need to be trained does not 
significantly increase the time taken to obtain its output. 
By this observation, it can be deduced that instead of 
a two hidden layered ANN with 3 and 4 hidden nodes 
respectively, one hidden layered ANN with 16 hidden 
nodes (can be considered as the ‘arbitrary large number 
of hidden neurons’ as stated by Tan [2]),  can obtain a 
similar classification accuracy.

‘Local Best’ approach

Table 2:	 Results of Iris data set classification by Local 
Best approach

Inst
ance Class

No. of hidden nodes in 
each hidden layer

Classification 
Accuracy 
(%)1st 2nd 3rd 4th 5th

1

1 8 0 0 0 0 96.00
2 3 8 0 0 0 97.33
3 2 2 3 0 0 97.33
4 2 9 2 4 0 97.33
5 7 4 6 3 7 97.33

2

1 2 0 0 0 0 96.00
2 7 4 0 0 0 97.33
3 5 3 8 0 0 96.00
4 8 8 7 6 0 97.33
5 2 5 9 6 4 97.33

3

1 9 0 0 0 0 96.00
2 8 9 0 0 0 97,33
3 2 7 8 0 0 94.67
4 2 5 2 10 0 97.33
5 10 6 7 2 5 97.33

4

1 3 0 0 0 0 94.67
2 9 7 0 0 0 96.00
3 9 7 5 0 0 97.33
4 8 8 6 9 0 97.33
5 8 6 3 8 9 97.33

5

1 5 0 0 0 0 93.33
2 8 7 0 0 0 96.00
3 10 2 4 0 0 97.33
4 10 3 5 3 0 97.33
5 7 5 8 6 5 97.33

The above results obtained from the ‘Local Best’ do not 
maintain consistency with the results obtained in the 
‘Global Best’ approach. This could be due to the fact that 
the population is not subject to a change in the number 
of hidden layers throughout the execution lifetime. Even 
the result that 4 or 5 hidden layers also give an accuracy 
of 97.3% might be directly related to this fact (since 
the networks do not change their number of hidden 
layers but only change the number of nodes in a layer, 
it has the opportunity of trying out a large number of 
different combinations for the total number of hidden 
nodes, within a predetermined number of hidden layers).

Ionosphere Data Classification results

‘Global Best’ approach

Table 3:	 Results of Ionosphere data (full set) 
classification by Global Best approach

Inst
ance

Optimal 
No. of 
hidden 
layers

No. of hidden nodes in 
each hidden layer

Classification 
Accuracy 

(%)
1st 2nd 3rd 4th 5th

1 4 6 5 9 1 0 96.87
2 4 6 4 8 9 0 96.01
3 3 5 6 7 0 0 96.58
4 2 9 6 0 0 0 97.72
5 4 6 7 8 9 0 96.58
6 4 8 1 7 7 0 96.01
7 2 9 1 0 0 0 96.58
8 2 10 9 0 0 0 96.01
9 4 5 5 8 8 0 95.16
10 3 3 8 3 0 0 96.58

In a previous research which has used PSO to initialize 
ANN weights [11], a maximum classification accuracy 
rate of 95.41% has been achieved for the whole 
data set (training data + test data) in the ionosphere 
classification problem, by an ANN with 9 hidden units 
(hidden nodes) and weights which have been initialized 
using the PSO concept (The number of hidden layers 
is not specifically mentioned). On the other hand, an 
ANN having 7 hidden nodes and whose weights were 
randomly initialized, achieved a classification accuracy 
of only 94.43% [11]. But according to the experimental 
results shown in Table 3, a maximum classification 
accuracy of 97.72% has been obtained by an ANN whose 
structure was evolved using the ‘Global Best’ approach 
which implements the PSO algorithm to evolve the 
ANN structure. This clearly shows the effectiveness of 
the ‘Global best approach’.

Table 4 gives the results obtained from the 
‘Global Best’ approach for the test data set only of the 
Ionosphere data classification problem.

According to Table 4, a maximum classification 
accuracy of 94.70% was obtained for the test data set 
only. According to the facts given in the reference work 
[13], the ionosphere test data set classification carried 
out by a Multilayer Feed-Forward Network using back 
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propagation, has obtained an average of 96% accuracy on 
the test instances. Even though it has mentioned that back 
propagation was tested with several different numbers 
of hidden units (between 0 and 15), specifications on the 
total number of hidden layers has not been stated.

Table 4: Results of Ionosphere data (test set) 
classification by Global Best approach

Inst
ance

Optimal 
No. of 
hidden 
layers

No. of hidden nodes in 
each hidden layer

Classifi
cation 

Accuracy
 (%)1st 2nd 3rd 4th 5th

1 3 1 2 8 0 0 93.38
2 3 3 1 1 0 0 93.38
3 4 8 6 6 7 0 92.05
4 4 9 2 4 3 0 93.38
5 2 8 4 0 0 0 90.73
6 4 5 1 3 7 0 93.38
7 2 8 1 0 0 0 90.73
8 2 4 4 0 0 0 92.05
9 4 10 4 2 7 0 94.70
10 4 6 6 4 4 0 90.73

Local Best’ approach

The classification data given in Table 5, confirms the 
results given in Table 3 by presenting the fact that ANNs 
with two hidden layers or four hidden layers have a 
tendency to give a maximum accuracy level (94.87% is 
the highest accuracy achieved in the above approach). 
As shown in the ‘Global Best’ approach, ANNs with a 
single hidden layer or with 5 hidden layers, have never 
succeeded in achieving a maximum accuracy level.

CONCLUSION

The results obtained from the ‘Global Best’ and the 
‘Local Best’ optimisation approaches suggest that the 
‘Global Best’ approach for adaptive optimisation of 
ANNs is more successful in obtaining higher accuracy 
levels. When considering the application case studies, 
the ‘Global Best’ approach has achieved a maximum 
classification accuracy of 97.33% for the Iris Data 
classification, and 97.72% accuracy on the full data set 
of the Ionosphere Data classification while achieving 
a classification accuracy of 94.70% on the test data set 
of the same case study. When compared with previous 
research work which has been carried out on the same 
case studies, the above mentioned accuracy values prove 
to be better than nearly all of the past results. Therefore 
it can be concluded that the ‘Global Best’ approach has 
the potential to obtain a structurally optimized neural 
network. 

In this research, evolution of only the number 
of hidden layers and hidden nodes has been considered 
with regard to the adaptive optimisation of an ANN. But 
it is well known that these are not the only parameters 
that can be optimized in a given ANN. Therefore in 
the future, this research work can include the adaptive 
optimisation of other ANN parameters like the learning 

rate, learning momentum and activation functions, 
in order to realize the goal of achieving a completely 
optimized ANN.

Table 5: Results of Ionosphere data (full set) 
classification by Local Best approach

Inst
ance Class

No. of hidden nodes in 
each hidden layer

Classifi
cation 

Accuracy
 (%)1st 2nd 3rd 4th 5th

1

1 9 0 0 0 0 92.88
2 7 8 0 0 0 94.87
3 5 4 3 0 0 93.16
4 3 3 9 6 0 94.87
5 5 5 2 8 8 93.45

2

1 3 0 0 0 0 92.02
2 3 8 0 0 0 93.16
3 10 10 3 0 0 94.30
4 7 3 6 6 0 94.30
5 7 8 4 7 2 93.73

3

1 4 0 0 0 0 92.59
2 9 5 0 0 0 93.73
3 8 3 2 0 0 94.30
4 4 7 4 5 0 92.59
5 6 6 8 8 4 93.16

4

1 8 0 0 0 0 93.45
2 7 2 0 0 0 94.87
3 5 7 7 0 0 93.73
4 9 7 8 6 0 93.73
5 7 7 6 2 10 93.45

5

1 4 0 0 0 0 92.02
2 5 7 0 0 0 92.59
3 9 9 3 0 0 93.16
4 7 3 3 4 0 91.74
5 8 8 2 2 10 94.30
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