
Abstract— This paper presents a study of the impact of
memory architectures, distributed memory (DM) and
virtual shared memory (VSM), in the solution of
parallel numerical algorithms on a multi-processor
cluster. A parallel implementation of the shallow water
equations to model a Tsunami is chosen as the case
study. Data is partitioned into sub-domains, namely a
four by three grid scheme and an eight by six
grid scheme which are used for the parallel
implementation of this model. There are four versions
of the parallel algorithm for each grid scheme:
distributed memory without threads, distributed
memory with threads, virtual shared memory without
threads, and virtual shared memory with threads.
These four parallel versions have been implemented
on a high performance cluster, connected to the
“Nordugrid”. Experiments are realized using the
Message Passing Interface (MPI) library, the C/Linda,
and the Linux pthreads. Subject to the availability of
memory, the virtual shared memory version without
threads performs best, and as the task is scaled up, the
threaded	 version	 becomes	 efficient	 in	 both	 DM	 and	
VSM implementations.

Index Terms—MPI, Linda, multi processors,
Shallow water equations, tsunami model.

II. NTRODUCTION

ATsunami is a series of waves generated in a
body of water by an impulsive disturbance

that vertically displaces the water column [1],
[2]. Earthquakes, landslides, volcanic eruptions,
explosions can generate a tsunami. A tsunami can
savagely attack coastlines, causing devastating
property damage and loss of life.

Manuscript received March 6, 2009. Accepted July 7th, 2009.
This research was funded by the National Science Foundation,
Sri Lanka (Grant No. RG/2005/FR/07) and by SPIDER, the
Swedish programme of ICT for developing Regions.

K.Ganeshamoorthy is with the Department of Computation
& Intelligent Systems, University of Colombo School of
Computing, 35, Reid Avenue, Colombo-7, Sri Lanka. (e-mail:
ganesh@webmail.cmb.ac.lk).

D.N.Ranasinghe and K.P.M.K.Silva are also with the
Department of Computation & Intelligent Systems, University of
Colombo School of Computing, 35, Reid Avenue, Colombo-7,
Sri Lanka. (email: dnr@ucsc.cmb.ac.lk, mks@ucsc.cmb.ac.lk)

R.Wait is with the International Science Programme and
Department of Information Technology, Uppsala University,
Uppsala, Sweden. (richard.wait@isp.uu.se)

On the Performance of the Parallel
Implementation of the Shallow Water Model

on Distributed Memory Architectures
K.Ganeshamoorthy, D.N.Ranasinghe, K.P.M.K.Silva and R.Wait

A Tsunami is characterized as a shallow water
wave. Shallow water waves are different from wind
generated waves, the waves many of us have seen
at the beach. Wind generated waves usually have a
period of five to twenty seconds and a wavelength
of about one hundred to two hundred meters.
A tsunami can have a period in the range of ten
minutes to two hours and a wavelength in excess of
500 km. It is because of their long wavelengths that
a tsunami behaves as shallow water waves. A wave
is characterized as a shallow water wave when the
ratio between the water depth and its wavelength
gets very small [1].

Fig.1. Typical mixed mode programming model [9].

The shallow water equations on a rotating sphere
serve as a primary test problem for numerical
methods used in modeling global atmospheric
flows [3]. They describe the behaviour of a shallow
homogeneous incompressible and inviscid fluid
layer. They present the major difficulties found
in the horizontal aspects of three-dimensional
global atmospheric modeling. Thus, they provide
a first test to weed out potentially non-competitive
schemes without the effort of building a complete
model. However, because they do not represent the
complete atmospheric system, the shallow water
equations are only a first test. Ultimately schemes
which look attractive based on these tests must be
applied to the complete baroclinic problem. The
existence of a standard test set for the shallow water
equations will encourage the continued exploration

The International Journal on Advances in ICT for Emerging Regions 2009 02 (01) : 3 - 10

4 K.Ganeshamoorthy, D.N.Ranasinghe, K.P.M.K.Silva and R.Wait

December 2009 The International Journal on Advances in ICT for Emerging Regions 02

of alternative numerical methods and provide the
community with a mechanism for judging the merits
of numerical schemes and parallel computers for
atmospheric flow calculations [3].

The current state-of-the-art in tsunami modeling
still requires considerable quality control, judgment,
and iterative, exploratory computations before
a scenario is assumed reliable. This is why the
efficient computation of many scenarios for the
creation of a database of pre-computed scenarios
that have been carefully analyzed and interpreted by
a knowledgeable and experience tsunami modeler is
an essential first step in the development of a reliable
and robust tsunami forecasting and hazard assessment
capability. Using more advanced parallel algorithms,
it may become technically feasible to execute real-
time model runs for guidance as an actual event
unfolds. However, this is not currently justified on
scientific grounds; an operational real-time model
forecasting capability must await improved and
more detailed characterization of earthquakes in
real-time, and verification that the real-time tsunami
model computations are sufficiently robust to be
used in an operational, real-time model [4].

Shallow water equations have been widely used to
study the Tsunami phenomenon [5] [3], as a model
of the basic fluid dynamics of the ocean. Solving
partial differential equations numerically for real-life
problems are computationally demanding, therefore,
utilizing super-computers/clusters efficiently
is important in order to achieve computational
efficiency [6]. Strategies to improve the accuracy
and overall quality of model predictions have been
and continue to be of great interest to numerical
model developers but in addition to accuracy, the
utility of a numerical model is greatly affected by
the algorithm’s efficiency [7].

Parallel computing provides a feasible and
efficient approach to solve very large-scale
prediction problems but any redistribution of the
data is a potentially time-consuming task for parallel
architectures [8]. Fig.1. shows the memory hierarchy
that exists in most nodes of a modern cluster
environment [9], where many nodes are linked
together by a high-speed network; and inside each
node there may be two or more processors; along
with each processor, memory access is either to a
high speed memory unit “cache” or the low speed
“main memory”.

The aim of this paper is to study the impact of
memory architectures associated with distributed
memory and virtual shared memory in the extraction
of multiple levels of parallelism, for the solution

of numerical algorithms. The objective here is to
evaluate the effects of the programming model on the
scalability of this shallow water model. Computing
the wave propagation in the tsunami model, where the
entire ocean is the solution domain, is challenging,
both due to the huge amount of computation needed
and due to the fact that different physics applies in
different regions [10].

The Message Passing Interface, MPI [11],
and C/Linda [12] are alternative paradigms for
communication between global nodes in the
distributed memory environment and in the virtual
shared memory environment, respectively. In the
mixed mode programming model, both MPI and C/
Linda are used for communication between global
nodes while inside each MPI process and within
each C/Linda process POSIX threads [13] are used
in order to extract further parallelism.

This paper is organized as follows: In the section,
Related Work, we present the related work for our
study of research. The section on Linear Long Wave
Theory describes the linear long wave theory used
to simulate the tsunami model. In Algorithm Design,
we describe our design principles. Implementation
is presented next. Experimental results from both
memory architectures on high performance cluster
are presented and are discussed in Evaluation.
Finally, in Conclusion we make the concluding
remarks.

RelaTeD WORkII.

Parallel simulators for TsunamiA.
Hybrid tsunami simulators that allow different

sub-domains to use different mathematical models,
spatial discretizations, local meshes, and serial codes
have been proposed by Xing Cai [10]. Boussinesq
water wave equations given below are used for this
purpose.

where η and φ are primary unknowns denoting,
respectively, the water surface elevation and
velocity potential. The water depth H is assumed
to be a function of the spatial coordinates x and
y . In equations (1) and (2) the weak effect of
dispersion and nonlinearity is controlled by the two
dimensionless constants ε and α respectively. The
widely used linear shallow water equations can be
derived by choosing ε = α = 0.

 () ()

()2 0
6

 .
2

.
2

1 0.
3
1

6
1.

22 =
∂
∂

∇+







∂
∂

∇∇−+∇∇+
∂
∂

=∇





 ∇∇−

∂
∂

+∇+∇+
∂
∂

t
H

t
HH

t

HH
t

HH
t

φεφεηφφαφ

φηεφαηη

K.Ganeshamoorthy, D.N.Ranasinghe, K.P.M.K.Silva and R.Wait 5

December 2009 The International Journal on Advances in ICT for Emerging Regions 02

The equations from (1) to (4) are used to
model the tsunami. The equations (1) and (2) are
resolved by unstructured meshes and finite element
discretization, whereas structured meshes and finite
differences are commonly used for equations (3)
and (4). Such a parallelization strategy is most
easily realized by using sub-domains, such that
the entire spatial domain Ω is decomposed into a
set of overlapping sub-domains {Ωs}

p
s=1. In generic

setting, where a partial differential equation (PDE)
is expressed as LΩ(u)=fΩ, the Schwarz algorithm
consists of an iterative processes generating u0, u1,
u2,, uk as a series of approximate solutions.
During Schwarz iteration k, each sub-domain first
independenly updates its local solution through

where 1−
Ω
k

s
f refers to a right-hand side which is

restricted within Ωs and depends on the latest global
approximation uk-1 . Then, the new global solution
uk is composed by sewing together the sub-domain
local solutions uk

1, u
k

2, u
k
3,, u

k
p

Equation (5) thus opens for the possibility of using
different local solvers in different sub-domains.
Taking the idea of additive Schwarz one step further,
different mathematical models in different sub-
domains can be applied. Therefore, different serial
codes may be deployed region wise. The proposed
hybrid parallel tsunami simulator is implemented
using object-oriented techniques and is based on
an existing advanced C++ finite element solver
named class Boussinesq applicable for unstructured
meshes, and a legacy F77 finite difference code
applicable for uniform meshes. The resulting hybrid
parallel tsunami simulator thus has full flexibility
and extensibility [10].

B. Parallel computation of a highly nonlinear
Boussinesq equation model through domain
decomposition

Applications of the Boussinesq equations
cover a broad spectrum of ocean and coastal
problems of interest, from wind wave propagation
in intermediate and shallow water depths to the
study of tsunami wave propagation across large
ocean basins. In general, implementations of the
Boussinesq wave model to calculate free surface
wave evolution in large basins are computationally
intensive, requiring large amount of CPU time and
memory. To facilitate such extensive computations,
a parallel Boussinesq model has been developed by

the Khairil et al. [2], using the domain decomposition
technique in conjunction with MPI. The parallel
Boussinesq model developed is based on its serial
counterpart. The governing equations consist of
the two-dimensional depth-integrated continuity
equation:

and the horizontal momentum equation:

where S = ∇.ux, T = ∇.(hux) + ∂h/∂t , h is depth, η is
free surface elevation.

Equations (6) and (7) differ from the equations
given by Wei et al. [14] in the inclusion of the
time derivatives of the depth (h1, h2)to account for
temporal bottom profile changes that occur during
landslide/earthquake, which is one of several
possible sources of tsunami.

The parallel approach has had three important
aspects, domain decomposition, communication,
and parallel solver of the tridiagonal system
of the simultaneous linear equations. Three
different domain sizes have been considered:(500
x 500), (1000 x 1000), and (2000 x 2000). The
overall performance of the model has been very
good. The efficiency of the model decreases as
the number of (500 x 500)and (1000 x 1000)
processors increases which is apparent in the case
of domains. The rate of the efficiency decrease is
faster for smaller domain. This is due to the ratio
of arithmetic operation time to communication time
decreasing faster for domains with smaller number
of nodes. The performance of the model improves as
the number of grids increases; a favourable feature
of a parallel model which is intended for simulation
on ever-increasing domain sizes. Thus, this parallel
model provides a future opportunity for large wave-
resolving simulations in the near shore, with global
domains of many millions of grid points, covering
O(100km2) and greater basins. Further, real-time
simulation with Boussinesq equations becomes a
possibility.

C. Implicit Parallel FEM Analysis of Shallow
Water Equations

Jiang Chunbo et al. [15] have solved the shallow
water equations (SWEs) as the governing equation
to model a river flow. SWEs are implemented on
clustered workstations. For the parallel computation,
the mesh is automatically partitioned using the

() () () ()6 0Tzhç
2
1Sz

2
1hçhç

6
1H.ìH.

t
H

x
2
x

222
x =

















∇






 −−+∇






 −+−∇−∇+

∂
∂ u

() ()5 1−
ΩΩ = kk

s ss
fUL

()

() ()() ()() () ()7 0
2
1.

2
1.

2
1

2
1.

2
1

222

22

=






 ++∇−+∇−++

∂
∂

∇+















 +∇−∇+∇

∂
∂

+∇+∇+
∂

∂

STSzTzST
t

TSTzSz
t

g
t

xxxx

xxxx
x

ηηηηη

ηηη

uu

uuu

() ()

()4 0

3 0.

=+
∂
∂

=∇∇+
∂
∂

ηφ

φη

t

H
t

6 K.Ganeshamoorthy, D.N.Ranasinghe, K.P.M.K.Silva and R.Wait

December 2009 The International Journal on Advances in ICT for Emerging Regions 02

geometric mesh partitioning method. The governing
equations are then discretized implicitly to form a
large sparse linear system, which is solved using
a direct parallel generalize minimum residual
algorithm (GMRES). The shallow water equations
(8) and (9) used here are obtained by integrating
the conservation of mass and momentum equations
assuming a hydrostatic pressure distribution in the
vertical direction.

where η is the water elevation, H is the water depth,
qi = uH i, ui is the mean horizontal velocity, g is the
gravitational acceleration, v is the eddy viscosity,
ρ is the water density, τs

i is the surface shear stress,
and τb

i is the bottom shear stress.

The finite element method for triangular elements
is used for the spatial discretization. Three kinds
of finite element meshes are used to simulate the
velocity field in the two numerical examples, flow
around a circular cylinder and flow in the Yangtze
River. MPI has been used for the communication
between nodes. The computed results agree well
with the observed results. The good speedup and
efficiency for the parallel computation show that the
parallel computing technique is a good method to
solve large-scale problems [15].

lINeaR lONg Wave TheORyIII.
There are many different numerical methods

for computing shallow water equations on a
sphere. Therefore, a standard test suite of seven
problems for evaluating numerical methods for the
shallow water equations in spherical geometry was
proposed by Williamson et al [3] and accepted by
the modeling community in order to compare newly
proposed methods. The shallow water equations
are widely used as a prototype to study phenomena
like wave-vortex interactions that occur in more
complicated models of large scale atmosphere/
ocean dynamics [5].

Consider the sea to be a volume of incompressible
water on a rotating sphere, with Coriolis force, fu.
The horizontal coordinates are x and, y the vertical
coordinate z, which is zero at the mean sea surface
and positive upwards. The sea bed is located at z =
- H, and the surface is located at z = h. The linear
shallow water equations [16], [17], [18] consists of
the continuity equation

and the conservation of horizontal momentum

u and v are the velocity components in x- and
y- direction, is the surface elevation and g is the
acceleration due to gravity.

Defining the equations in terms of the discharge
fluxes U = uH, V = vH, leads to discretization
that always satisfy the conservation of mass. Then
the conservation of horizontal momentum can be
written as

The finite difference approximations using
centered differences in space and a leap-frog
time discretization, are based on a staggered grid
corresponding to an Arakawa C-grid [19], [20],
with the continuity equation centered on the point
xi , yj , tk + 1/ 2 and the equations of motion centered
on the points xi+1/2 , yj , tk and xi , yj+1/2 , tk
respectively.

Writing D ≡ h + H, and using upwind differences
for the convection terms to maintain stability it
follows that

where with up-winding,

and similarly for the other terms. The difference
equations are defined on a rectangular grid in
terms of spherical polar coordinates. An accurate
representation of tsunami running up the shore
implies a grid spacing of no more that 100 meters
in a region of about 4 km out from the shore. As
this fine grid is not reasonable over the whole ocean
a succession of overlapping grids is necessary near
the coast. A data decomposition scheme is applied

 (10) 0)]([)]([=+
∂
∂

++
∂
∂

+
∂
∂ Hhv

y
Hhu

xt
h

(12)

(11)

y
hgfu

y
vv

x
vu

t
v

x
hgfv

y
uv

x
uu

t
u

∂
∂

−=+
∂
∂

+
∂
∂

+
∂
∂

∂
∂

−=−
∂
∂

+
∂
∂

+
∂
∂

 () (9) 2,1, ,1
=























∂

∂
+

∂
∂

∂
∂

+−+
∂
∂

−=







∂
∂

+
∂
∂ ji

x
q

x
qv

xx
g H

H
q

x
q

t
q

i

j

j

i

j

b
i

s
i

i

i

j
j

i ττ
ρ

η

()

() (14)

(13)

2

2

y
hHhgfU

Hh
V

yHh
UV

xt
v

x
hHhgfV

Hh
UV

yHh
U

xt
U

∂
∂

+−=+







+∂

∂
+








+∂
∂

+
∂
∂

∂
∂

+−=−







+∂
∂

+







+∂

∂
+

∂
∂

(15) 1

2

2
1

2
1,

2
1

2
1,

1,3
2
1

2
1,

2

2
1

2
1,

1,2
2
1

2
3,

2

2
1

2
3,

1,1

2





























+









+









∆
≈








∂
∂

−

−

−

−

−

+

−

+

−

+

−

+

k

ji

k

ji

k

ji

k

ji

k

ji

k

ji

D

U

D

U

D

U

xD
U

x
λλλ





=−==<

−===≥−

+ 0 ,1 ,1 0
1 ,1 ,0 0

3,12,11,1

3,12,11,12
1

2
1, λλλ

λλλk

ji
U

(8) 0=
∂

∂
+

∂
∂

j

j

x
q

t
η

K.Ganeshamoorthy, D.N.Ranasinghe, K.P.M.K.Silva and R.Wait 7

December 2009 The International Journal on Advances in ICT for Emerging Regions 02

The physical or computational domain used in
this paper is rectangular in shape. In the domain
decomposition method, the rectangular domain
is divided into several smaller rectangular sub-
domains, where the number of sub-domains is
equal to the number of processors used. With four
processors, for example, there are three possible
ways of decomposing the domain into equal-area
parts as depicted in Fig. 2. The best decomposition
depends not only on the architecture of the system
being used, but more importantly on the memory
limitations on each node, especially in commodity
clusters, as such, an assignment like two by two is
recommended.

Fig. 3. (A) Overview of the unstructured grid and assignment
of worker nodes to sub-domains. (B) Arrows indicate the inner-
worker communication.

An important aspect in decomposing the domain
is the load balancing, i.e. all processors should
have equal or almost equal amount of data to be
processed. If the number of grid points is divisible
by the number of processors, the grid points in each
processor is simply the ratio of the number of grid
points to processors. If it is not, the remainder is
distributed across the first m processors, where m is
the remainder. The load should be balanced in both
x and y directions.

Fig. 4. Linear shallow water wave profiles at three different time-
steps (ts) calculated using 48 processors.

for the parallel solution of the shallow water
equations. In data decomposition, we keep the
sequential formulation of the problem, but distribute
the data and operations among the processors. The
scalability of several data decomposition algorithms
for finite difference atmospheric and ocean models
have been analyzed by several authors [21], [22].

Several strategies exist within the data decomposition
paradigm for dividing domains into sub-domains.
In the two-dimensional grid, the computational
domain is decomposed both in x and y coordinate
directions. In many cases, the computation is
proportional to the volume of a sub-domain and the
communication is proportional to the surface area.
In such cases, a logical strategy is to partition the
domain in such a way that it minimizes the surface
area of each sub-domain relative to its volume. This
keeps the computation-to-communication ratio
high. In this study, two-dimensional decomposition
is chosen. This involves assigning each sub-domain
to a processor and solving the equations for that sub-
domain on the respective processor. With the two
dimensional decomposition, no global information
is required at any particular grid point and inter-
processor communications are required only at the
boundaries of the sub-domains. The inner-border
of a sub-domain requires the outer-border of the
adjacent sub-domain during a time-step because of
the spatial discretization [16], [17], [18].

algORIThm DesIgNIv.
In our work, the domain decomposition method

is used to parallelize the tsunami model. In this
method, the parallel algorithm is very similar to the
serial algorithm with some additional routines added
to facilitate the communication between processors.
Using this method, all the processors involved in
the parallel calculations basically perform the same
computational operations. The only difference is in
the data being processed in each processor.

 Rectangular
physical or

computational
domain

0

1
2

3

0

1

2

3

0

2

3

1

Fig. 2. Three possible ways of decomposing a rectangular domain. The
numbers in the sub-domains represent the processor number.

8 K.Ganeshamoorthy, D.N.Ranasinghe, K.P.M.K.Silva and R.Wait

December 2009 The International Journal on Advances in ICT for Emerging Regions 02

Two grid schemes, a 12 node (4 x 3) grid system
and a 48 node (8 x 6) grid system, are used to
parallelize the tsunami model with a domain size of
(900 x 1226). Portions of the domains are assigned
to each of the worker nodes, as illustrated in Fig. 3
where each sub-domain is labeled with a processor
(worker) number. Snapshots of the free surface
evolution are shown in Fig. 4. Data for each sub-
domain is stored with each processor including
water depth, coordinates, and initial disturbance.
This data is read by each of the workers in a pre-
processing stage i.e., prior to initiating the time-
integration loop. Since the model updates the
solution explicitly using local data, each processor
works independently of the others but requires
data from neighbouring workers to update solution
along sub-domain boundaries. The exchange
of data between processors occurs several times
per time-step. There are two key features to this
exchange: First, only data along the boundaries
between processors is exchanged. Second, each
processor is only required to communicate
with at most four other processors. The domain
decomposition is performed with this second feature
in mind to avoid communications between more
than four other processors.

Communication occurs between two adjacent
processors during message passing. In passing the
data from one processor to another, an efficient
and safe communication must be developed. To
efficiently exchange the data between adjacent
processors, the data is first stored in a contiguous
memory prior to executing the sending processes.
At the same time contiguous memories of the same
size as used in the sending processes are created to
receive the data from the sending processes. At this
point, the data is ready for sending and receiving
processes.

TaBle I
RUN TIme IN seCONDs (WOT – WIThOUT ThReaD; WT – WITh ThReaD)

Nodes MPI
wot wt

C/Linda
wot wt

12 9686.54 11053.54 2743.74 3297.78
48 11934.38 10273.73 3183.43 2845.34

In this model, message passing occurs four
times per time-step and the MPI function, ``MPI_
Sendrecv’’, and the C/Linda operations “in” and
“out” are used to perform the message passing
between global nodes. This corresponds to eight
messages per time- step per processor independent
of the number of processors being used. Many more
messages are sent during pre-processing, but these
are ignored for run-time analysis purposes since
time integration is by far the most time consuming
element of the program. The parallel algorithm is
outlined below.

1. Decompose rectangular domain into load
balanced rectangular sub-domains where the
width and length of a rectangular sub-domain
are W/Nw approximately, and L/Nl respectively,
where W and L are the width and length of
domain, and N = Nw*N1 is the number of
processors to be used in the (Nw x N1) grid scheme.

 2. Specify parallel language related parameters,
such as locations, neighbours, sub-domain sizes,
and file names, of processors. Location of kth
processor is (rk, ck), where rk = k/gdm1 + 1 and
ck = k - (rk - 1)* gdm1 + 1 with gdm1 and gdm2
being the dimensions of the grid. In the four by
three grid scheme, gdm1 = 3 and gdm2 = 4, and
in the eight by six scheme, gdm1=6 and gdm2=8.
For k = 0, 1, 2, 3, 4, , (gdm1*gdm2 -1),
define northk, southk, eastk, and westk to be the
neighbours located in the side of north, south,
east and west of the kth processor, then:

 northk = k - gdm1 if rk > 1
 southk = k + gdm1 if rk <gdm2
 eastk = k + 1 if ck < gdm1
 westk = k - 1 if ck > 1

 3. Input data and initial conditions:

Each processor, (a) Pk , reads the
water depth, coordinates, and
initial disturbance from the
text file assigned in step 2.

(b) Each processor, Pk , exchanges sub-
domain boundary data from eastk to
westk, from westk to eastk, from northk
to southk , and form south, to northk,
in oder.

4. Set parameters and coefficients used at the open

sea boundary.

5. Repeat the following steps for the pre-defined
time-steps:

(a) Each processor, Pk, exchanges sub-
domain boundary data from eastk to
westk.

(b) Each processor, Pk, exchanges sub-
domain boundary data from northk
to southk

(c) Computation of the equation of
continuity.

(d) Setting of the open sea boundary
condition.

K.Ganeshamoorthy, D.N.Ranasinghe, K.P.M.K.Silva and R.Wait 9

December 2009 The International Journal on Advances in ICT for Emerging Regions 02

(e) Each processor, Pk , exchanges sub-
domain boundary data from westk to
eastk.

(f) Each processor, Pk , exchanges sub-
domain boundary data from southk
to northk.

6. Gather computed results among all processors.

7. Compute the output on processor, where both
are equal to null.

ImplemeNTaTIONv.
Data is partitioned by sub-domains, where a four

by three grid scheme and an eight by six grid scheme
are used for the parallel implementation of this
model. In each of the grid schemes, there are four
parallel variations: (1) distributed memory without
threads; (2) distributed memory with threads; (3)
virtual shared memory without threads; (4) virtual
shared memory with threads. Implementations use
the Message Passing Interface (MPI) library [11], the
C/Linda [12] and the pthread library [13].

The mixed-mode programming model which uses
thread programming in the shared memory layer and
message passing programming in the distributed
memory layer is a method commonly used to utilize
the hierarchy of memory resources efficiently [9]. In
our mixed-mode programming model, MPI is used
for the data communication between the global nodes,
and within each MPI process, pthreads are used. In
the virtual shared memory mixed-mode approach,
C/Linda is used for the data communication
between the global nodes, and within each
C/Linda process, pthreads are used.

These four algorithms have been implemented
on the Monolith cluster of Nordugrid [23] which
consists of a high speed backbone interconnecting
multi processor nodes. The Monolith cluster has
396 nodes, all of which are i686 architecture with
2.20GHz Intel(R) XEON(TM) processors, dual
processor nodes and 2048MB per node main
memory and 512KB cache. The operating system is
Linux version 2.4.34-cap1-smp.

evalUaTIONvI.
Table I shows the timing values for the

eight scenarios arising from the four parallel
variations of the algorithm mentioned above.
Consider the four by three grid scheme, with
both threading and non-threading. The parallel
algorithms for the virtual shared memory exhibit
better performance than the algorithms for

distributed memory. Though the virtual shared
memory implicitly passes messages, the replication
management subsystem has been optimized in
C/Linda compared to MPI [10], to yield better
performance.

In the four by three grid scheme, in both scenarios
for distributed and virtual shared memory, non-
threading algorithms exhibit better performance than
threading algorithms. One possible explanation for
this is that each node keeps nine, two dimensional
floating point type arrays of size equal to the sub
domain size. Because of the memory limitations
it is not possible to declare local two-dimensional
arrays for threads, causing all threads in a node
to concurrently use global arrays for their own
computations.

Now consider the eight by six grid scheme.
Here too, for both threading and non-threading, the
parallel algorithms for the virtual shared memory
exhibit better performance than the algorithms for
distributed memory. In contrast to the previous
instance, both algorithms for distributed and
virtual shared memory, the threading algorithms
exhibit better performance than non-threading
algorithms. This is because that the sub domain size
allocated to each node is half size of sub domain
size of the smaller grid scheme of four by three
size. The local two dimensional floating point type
array allocation for threads in a node is now possible
compared to the four by three grid system. Therefore,
since all threads of a node work independently,
the threading parallel algorithm shows better
performance than non-threading parallel algorithm.

Among the parallel variations not using threads
in both memory architectures, the four by three grid
scheme shows better performance than eight by six
grid scheme. This is due to the ratio of computation
time to communication overhead decreasing faster
for domains with smaller size. However, when the
task is scaled up, say up to eight by six grid system,
owing to the smaller sub-domain sizes aligning
with the available memory in the node, the threaded
versions become more efficient in both MPI and
C/Linda implementations. In both threading and
non-threading environments, the C/Linda version
exhibits better performance than the MPI version.

CONClUsIONvII.
This paper has presented eight different parallel

implementations of a tsunami model based
on the shallow water equations. Each of these
implementations use a mixed-mode programming
model from thread based shared memory, to

10 K.Ganeshamoorthy, D.N.Ranasinghe, K.P.M.K.Silva and R.Wait

December 2009 The International Journal on Advances in ICT for Emerging Regions 02

distributed memory and finally to virtual shared
memory. Owing to node memory limitations,
scalability issues become paramount, and threading
becomes a significant bottleneck if sufficient node
memory is not available, offsetting the middleware
advantages. With sufficient node memory however,
C/Linda with threads outperforms MPI with threads,
indicating the effectiveness of extracting parallelism
over virtual shared memory, distributed memory
and shared memory multiple levels for this class of
problems.

aCkNOWleDgmeNT

This work was conducted at the Department of
Computation and Intelligent Systems, University
of Colombo School of Computing. This research
was performed using computational resources at
the National Supercomputer Centre, Linkoping
University, Sweden, and of the computational
resources of Research Laboratory, University of
Colombo School of Computing.

RefeReNCes

[1] Wikipedia. http://en.wikipedia.org/wiki/Tsunami, 2009.
[2] K. I. Sitanggang and P. Lynett, Parallel computation of a

highly nonlinear Boussinesq equation model through domain
decomposition, International journal for numerical methods
in fluids, ISSN 0271-2091, vol. 49, no.1, 2005, pp. 57-74.

[3] D. L. Williamson, J. B. Drake, J. J. Hack, R. Jakob, and
P. N. Swarztrauber, A standard Test Set for numerical
Approximations to the Shallow Water Equations in Spherical
Geometry, Journal of Computational Physics, 102(1), pp.
211-224, 1991.

[4] T. Vasily, G. Frank, and M. Hal, Tsunami Forecasting and
Hazard Assessment Capabilities, Pacific Disaster Center
(PDC) & Maui High Performance Computing Center
(MHPCC) Tsunami Modeling, National Oceanic and
Atmospheric Administration Center for Tsunami Research

 (http://nctr.pmel.noaa.gov/, 2009)
[5] J. D. Paul, and S. Rick, Shallow Water Equations with a

Complete Coriolis Force and Topography, Physics of Fluids,
September 2005.

[6] B. Ragnhild, Nested Parallelism in OpenMP with Application
to Adaptive Mesh Refinement, University of Bergen,
February 2003.

[7] F. S. Brett and C. P. John, Parallel Implementation of an
Explicit Finite-volume Shallow-water Model, 16th ASCE
Engineering Mechanics Conference, July 16-18, 2003,
University of Washinton, Seattle.

[8] S. L. Johnsson and C. Ho, Algorithms for Matrix
Transposition on Boolean N-Cube Configured Ensemble
Architectures, SIAM J. Matrix Analysis and Application,
vol.9(3), July 1988, pp.419-454.

[9] W. Meng-Shiou, A. Srinivas, and A. K. Ricky, Mixed Mode
Matrix Multiplication, Proceedings of the IEEE International
Conference on Cluster Computing, IEEE Computer Society
Washington, DC, USA, 2002.

[10] C. Xing and P. L. Hans, Making Hybrid Tsunami
Simulators in a Parallel Software Framework, LNCS, Applied
Parallel Computing. State of the Art in Scientific Computing,
vol. 4699/2008, pp. 686-693.

[11] MPI Forum http://www.mpi-forum.org/http://www-unix.
mcs.anl.gov/mpi/, 2009.

[12] Linda User Guide, Scientific Computing Associates IC., One
Century Tower, 265 Church Street, New haven, CT 06510-

 7010 USA, September, 2005. (http://www.lindaspaces.com/
about/index.html, 2009)

[13] Pthreads.http://www.math.arizona.edu/swig/pthreads/
threads.html, 2009.

[14] G. Wei, J. T. Kirby, S. T. Grilli, R. Subramanya, A fully
nonlinear Boussinesq model for surface waves, Part I, Highly
nonlinear unsteady waves, Journal Fluid Mechanics1995;
294:71-92.

[15] J. Chunbo, L. Kai, L. Ning, and Z. Qinghai, Implicit Parallel
FEM Analysis of Shallow Water Equations, Tsinghua
Science & Technology, vol. 10, Issue 3, June 2005, pp. 364-
371.

[16] http://www.gfdl.noaa.gov/fms/pubrel/m/atm_dycores/src/
atmos_spectral_shallow/shallow.pdf, 2009.

[17] http://www.sea.ee/~elken/DO5.pdf, 2009.
[18] http://www.misu.su.se/~goran/shallow_water/, 2009.
[19] Arakawa A and Lamb V, Computational design of the basic

dynamical processes of the UCLA general circulation model,
Methods in Computational Physics, vol. 17, Academic Press,
1977, pp. 174-267.

[20] C. Goto and Y. Ogawa, Dept. of Civil Engineering, Tohoku
University, Translated for the Tsunami Inumdation Modelling
Exchange Project, by N. Shuto. Numerical method of

 tsunami simulation with the leap-frog scheme, UNESCO
Intergovernmental Oceangraphic Commission, Manuals and
Guides, 35, 1992.

[21] S. Roar, Scalability of Parallel Grid Point Limited Area
Atmospheric Models I & II, Manuscript, Department of
Mathematics Sciences, Norwegian University of Science
and Technology, Trodheim, Norway, 1996.

[22] S. Thomas, J. Cote, A. Staniforth, I. Lie, and R. Skalin,
A Semi-Implicit Semi-Lagrange Shallow-Water Model
for Massively Parallel Processors, Proceedings of the 6th
ECMWF Workshop on the Use of Parallel Processors in
Meteorology, November 1994, pp. 407-423.

[23] The Grid middleware project in the Nordic countries.
 http://nordugrid.org

