
Abstract— This paper presents a study of the impact of 
memory architectures, distributed memory (DM) and 
virtual shared memory (VSM), in the solution of 
parallel numerical algorithms on a multi-processor 
cluster.  A parallel implementation of the shallow water 
equations to model a Tsunami is chosen as the case 
study. Data is partitioned into sub-domains, namely a 
four by three grid scheme and an eight by six 
grid scheme which are used for the parallel 
implementation of this model. There are four versions 
of the parallel algorithm for each grid scheme: 
distributed memory without threads, distributed 
memory with threads, virtual shared memory without 
threads, and virtual shared memory with threads. 
These four parallel versions have been implemented 
on a high performance cluster, connected to the 
“Nordugrid”. Experiments are realized using the 
Message Passing Interface (MPI) library, the C/Linda, 
and the Linux pthreads. Subject to the availability of 
memory, the virtual shared memory version without 
threads performs best, and as the task is scaled up, the 
threaded	 version	 becomes	 efficient	 in	 both	 DM	 and	
VSM implementations.

Index Terms—MPI, Linda, multi processors, 
Shallow water equations, tsunami model.

II. NTRODUCTION

ATsunami is a series of waves generated in a 
body of water by an impulsive disturbance 

that vertically displaces the water column [1], 
[2]. Earthquakes, landslides, volcanic eruptions, 
explosions can generate a tsunami. A tsunami can 
savagely attack coastlines, causing devastating 
property damage and loss of life. 
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A Tsunami is characterized as a shallow water 
wave.  Shallow water waves are different from wind 
generated waves, the waves many of us have seen 
at the beach. Wind generated waves usually have a 
period of five to twenty seconds and a wavelength 
of about one hundred to two hundred meters. 
A tsunami can have a period in the range of ten 
minutes to two hours and a wavelength in excess of 
500 km. It is because of their long wavelengths that 
a tsunami behaves as shallow water waves. A wave 
is characterized as a shallow water wave when the 
ratio between the water depth and its wavelength 
gets very small [1].

Fig.1.  Typical mixed mode programming model [9].

The shallow water equations on a rotating sphere 
serve as a primary test problem for numerical 
methods used in modeling global atmospheric 
flows [3]. They describe the behaviour of a shallow 
homogeneous incompressible and inviscid fluid 
layer. They present the major difficulties found 
in the horizontal aspects of three-dimensional 
global atmospheric modeling. Thus, they provide 
a first test to weed out potentially non-competitive 
schemes without the effort of building a complete 
model. However, because they do not represent the 
complete atmospheric system, the shallow water 
equations are only a first test. Ultimately schemes 
which look attractive based on these tests must be 
applied to the complete baroclinic problem. The 
existence of a standard test set for the shallow water 
equations will encourage the continued exploration 
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of alternative numerical methods and provide the 
community with a mechanism for judging the merits 
of numerical schemes and parallel computers for 
atmospheric flow calculations [3].

The current state-of-the-art in tsunami modeling 
still requires considerable quality control, judgment, 
and iterative, exploratory computations before 
a scenario is assumed reliable. This is why the 
efficient computation of many scenarios for the 
creation of a database of pre-computed scenarios 
that have been carefully analyzed and interpreted by 
a knowledgeable and experience tsunami modeler is 
an essential first step in the development of a reliable 
and robust tsunami forecasting and hazard assessment 
capability. Using more advanced parallel algorithms, 
it may become technically feasible to execute real-
time model runs for guidance as an actual event 
unfolds. However, this is not currently justified on 
scientific grounds; an operational real-time model 
forecasting capability must await improved and 
more detailed characterization of earthquakes in 
real-time, and verification that the real-time tsunami 
model computations are sufficiently robust to be 
used in an operational, real-time model [4].

Shallow water equations have been widely used to 
study the Tsunami phenomenon [5] [3], as a model 
of the basic fluid dynamics of the ocean. Solving 
partial differential equations numerically for real-life 
problems are computationally demanding, therefore, 
utilizing super-computers/clusters efficiently 
is important in order to achieve computational 
efficiency [6]. Strategies to improve the accuracy 
and overall quality of model predictions have been 
and continue to be of great interest to numerical 
model developers but in addition to accuracy, the 
utility of a numerical model is greatly affected by 
the algorithm’s efficiency [7].

Parallel computing provides a feasible and 
efficient approach to solve very large-scale 
prediction problems but any redistribution of the 
data is a potentially time-consuming task for parallel 
architectures [8]. Fig.1. shows the memory hierarchy 
that exists in most nodes of a modern cluster 
environment [9], where many nodes are linked 
together by a high-speed network; and inside each 
node there may be two or more processors; along 
with each processor, memory access is either to a 
high speed memory unit “cache” or the low speed 
“main memory”.

The aim of this paper is to study the impact of 
memory architectures associated with distributed 
memory and virtual shared memory in the extraction 
of multiple levels of parallelism, for the solution 

of numerical algorithms. The objective here is to 
evaluate the effects of the programming model on the 
scalability of this shallow water model.  Computing 
the wave propagation in the tsunami model, where the 
entire ocean is the solution domain, is challenging, 
both due to the huge amount of computation needed  
and due to the fact that different physics applies in 
different regions [10].

The Message Passing Interface, MPI [11], 
and C/Linda [12] are alternative paradigms for 
communication between global nodes in the 
distributed memory environment and in the virtual 
shared memory environment, respectively. In the 
mixed mode programming model, both MPI and C/
Linda are used for communication between global 
nodes while inside each MPI process and within 
each C/Linda process POSIX threads [13] are used 
in order to extract further parallelism.

This paper is organized as follows: In the section, 
Related Work, we present the related work for our 
study of research. The section on Linear Long Wave 
Theory describes the linear long wave theory used 
to simulate the tsunami model. In Algorithm Design, 
we describe our design principles. Implementation 
is presented next. Experimental results from both 
memory architectures on   high performance cluster 
are presented and are discussed in Evaluation. 
Finally, in Conclusion we make the concluding 
remarks.

RelaTeD WORkII. 

Parallel simulators for TsunamiA. 
Hybrid tsunami simulators that allow different 

sub-domains to use different mathematical models, 
spatial discretizations, local meshes, and serial codes 
have been proposed by Xing Cai [10]. Boussinesq 
water wave equations given below are used for this 
purpose.

where η and φ are primary unknowns denoting, 
respectively, the water surface elevation and 
velocity potential. The water depth H is assumed 
to be a function of the spatial coordinates x and 
y . In equations (1) and (2) the weak effect of 
dispersion and nonlinearity is controlled by the two 
dimensionless constants ε and α  respectively. The 
widely used linear shallow water equations can be 
derived by choosing ε = α = 0.
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The equations from (1) to (4) are used to 
model the tsunami. The equations (1) and (2) are 
resolved by unstructured meshes and finite element 
discretization, whereas structured meshes and finite 
differences are commonly used for equations (3) 
and (4). Such a parallelization strategy is most 
easily realized by using sub-domains, such that 
the entire spatial domain Ω is decomposed into a 
set of overlapping sub-domains {Ωs}

p
s=1. In generic 

setting, where a partial differential equation (PDE) 
is expressed as LΩ(u)=fΩ, the Schwarz algorithm 
consists of an iterative processes generating u0, u1, 
u2, ..........., uk as a series of approximate solutions. 
During Schwarz iteration k, each sub-domain first 
independenly updates its local solution through  

where 1−
Ω
k

s
f  refers to a right-hand side which is 

restricted within Ωs and depends on the latest global 
approximation uk-1 . Then, the new global solution 
uk is composed by sewing together the sub-domain 
local solutions uk

1, u
k

2, u
k
3, ..........., u

k
p

Equation (5) thus opens for the possibility of using 
different local solvers in different sub-domains. 
Taking the idea of additive Schwarz one step further, 
different mathematical models in different sub-
domains can be applied. Therefore, different serial 
codes may be deployed region wise. The proposed 
hybrid parallel tsunami simulator is implemented 
using object-oriented techniques and is based on 
an existing advanced C++ finite element solver 
named class Boussinesq applicable for unstructured 
meshes, and a legacy F77 finite difference code 
applicable for uniform meshes. The resulting hybrid 
parallel tsunami simulator thus has full flexibility 
and extensibility [10].

B.   Parallel computation of a highly nonlinear 
Boussinesq equation model through domain 
decomposition

Applications of the Boussinesq equations 
cover a broad spectrum of ocean and coastal 
problems of interest, from wind wave propagation 
in intermediate and shallow water depths to the 
study of tsunami wave propagation across large 
ocean basins. In general, implementations of the 
Boussinesq wave model to calculate free surface 
wave evolution in large basins are computationally 
intensive, requiring large amount of CPU time and 
memory. To facilitate such extensive computations, 
a parallel Boussinesq model has been developed by 

the Khairil et al. [2], using the domain decomposition 
technique in conjunction with MPI.  The parallel 
Boussinesq model developed is based on its serial 
counterpart.  The governing equations consist of 
the two-dimensional depth-integrated continuity 
equation:

and the horizontal momentum equation:

where S = ∇.ux, T = ∇.(hux) + ∂h/∂t , h is depth,  η is 
free surface elevation.   
 

Equations (6) and (7) differ from the equations 
given by Wei et al. [14] in the inclusion of the 
time derivatives of the depth (h1, h2)to account for 
temporal bottom profile changes that occur during 
landslide/earthquake, which is one of several 
possible sources of tsunami.

The parallel approach has had three important 
aspects, domain decomposition, communication, 
and parallel solver of the tridiagonal system 
of the simultaneous linear equations. Three 
different domain sizes have been considered:(500 
x 500), (1000 x 1000), and (2000 x 2000). The 
overall performance of the model has been very 
good. The efficiency of the model decreases as 
the number of (500 x 500)and (1000 x 1000)
processors increases which is apparent in the case 
of  domains. The rate of the efficiency decrease is 
faster for smaller domain. This is due to the ratio 
of arithmetic operation time to communication time 
decreasing faster for domains with smaller number 
of nodes. The performance of the model improves as 
the number of grids increases; a favourable feature 
of a parallel model which is intended for simulation 
on ever-increasing domain sizes. Thus, this parallel 
model provides a future opportunity for large wave-
resolving simulations in the near shore, with global 
domains of many millions of grid points, covering 
O(100km2) and greater basins. Further, real-time 
simulation with Boussinesq equations becomes a 
possibility.

C.   Implicit Parallel FEM Analysis of Shallow 
Water Equations

Jiang Chunbo et al. [15] have solved the shallow 
water equations (SWEs) as the governing equation 
to model a river flow. SWEs are implemented on 
clustered workstations. For the parallel computation, 
the mesh is automatically partitioned using the 
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geometric mesh partitioning method. The governing 
equations are then discretized implicitly to form a 
large sparse linear system, which is solved using 
a direct parallel generalize minimum residual 
algorithm (GMRES). The shallow water equations 
(8) and (9) used here are obtained by integrating 
the conservation of mass and momentum equations  
assuming a hydrostatic pressure distribution in the 
vertical direction. 

where η is the water elevation, H  is the water depth, 
qi = uH i, ui  is the mean horizontal velocity, g  is the 
gravitational acceleration,  v is the eddy viscosity, 
ρ is the water density, τs

i is the surface shear stress, 
and τb

i is the bottom shear stress.

The finite element method for triangular elements 
is used for the spatial discretization. Three kinds 
of finite element meshes are used to simulate the 
velocity field in the two numerical examples, flow 
around a circular cylinder and flow in the Yangtze 
River. MPI has been used for the communication 
between nodes. The computed results agree well 
with the observed results. The good speedup and 
efficiency for the parallel computation show that the 
parallel computing technique is a good method to 
solve large-scale problems [15].

lINeaR lONg Wave TheORyIII. 
There are many different numerical methods 

for computing shallow water equations on a 
sphere. Therefore, a standard test suite of seven 
problems for evaluating numerical methods for the 
shallow water equations in spherical geometry was 
proposed by Williamson et al [3] and accepted by 
the modeling community in order to compare newly 
proposed methods. The shallow water equations 
are widely used as a prototype to study phenomena 
like wave-vortex interactions that occur in more 
complicated models of large scale atmosphere/
ocean dynamics [5].

Consider the sea to be a volume of incompressible 
water on a rotating sphere, with Coriolis force, fu.                 
The horizontal coordinates are x and, y the vertical 
coordinate z, which is zero at the mean sea surface 
and positive upwards. The sea bed is located at z = 
- H, and the surface is located at z = h. The linear 
shallow water equations [16], [17], [18] consists of 
the continuity equation

and the conservation of horizontal momentum 

u and v are the velocity components in x- and 
y- direction, is the surface elevation and g is the 
acceleration due to gravity.

Defining the equations in terms of the discharge 
fluxes U = uH, V = vH, leads to discretization 
that always satisfy the conservation of mass. Then 
the conservation of horizontal momentum can be 
written as

The finite difference approximations using 
centered differences in space and a leap-frog 
time discretization, are based on a staggered grid 
corresponding to an Arakawa C-grid [19], [20], 
with the continuity equation centered on the point       
xi , yj , tk + 1/ 2       and the equations of motion  centered 
on the points  xi+1/2 , yj , tk  and xi , yj+1/2 , tk    
respectively.

Writing D ≡ h + H, and using upwind differences 
for the convection terms to maintain stability it 
follows that

where with up-winding,

and similarly for the other terms. The difference 
equations are defined on a rectangular grid in 
terms of spherical polar coordinates. An accurate 
representation of tsunami running up the shore 
implies a grid spacing of no more that 100 meters 
in a region of about 4 km out from the shore. As 
this fine grid is not reasonable over the whole ocean 
a succession of overlapping grids is necessary near 
the coast.  A data decomposition scheme is applied 
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The physical or computational domain used in 
this paper is rectangular in shape. In the domain 
decomposition method, the rectangular domain 
is divided into several smaller rectangular sub-
domains, where the number of sub-domains is 
equal to the number of processors used. With four 
processors, for example, there are three possible 
ways of decomposing the domain into equal-area 
parts as depicted in Fig. 2. The best decomposition 
depends not only on the architecture of the system 
being used, but more importantly on the memory 
limitations on each node, especially in commodity 
clusters, as such, an assignment like two by two is 
recommended.

Fig. 3.  (A) Overview of the unstructured grid and assignment 
of worker nodes to sub-domains. (B) Arrows indicate the inner-
worker communication.

An important aspect in decomposing the domain 
is the load balancing, i.e. all processors should 
have equal or almost equal amount of data to be 
processed. If the number of grid points is divisible 
by the number of processors, the grid points in each 
processor is simply the ratio of the number of grid 
points to processors. If it is not, the remainder is 
distributed across the first m processors, where m is 
the remainder. The load should be balanced in both 
x and y directions. 

Fig. 4.  Linear shallow water wave profiles at three different time-
steps (ts) calculated using 48 processors.

for the parallel solution of the shallow water 
equations. In data decomposition, we keep the 
sequential formulation of the problem, but distribute 
the data and operations among the processors. The 
scalability of several data decomposition algorithms 
for finite difference atmospheric and ocean models 
have been analyzed by several authors [21], [22].

Several strategies exist within the data decomposition 
paradigm for dividing domains into sub-domains. 
In the two-dimensional grid, the computational 
domain is decomposed both in x and y coordinate 
directions. In many cases, the computation is 
proportional to the volume of a sub-domain and the 
communication is proportional to the surface area. 
In such cases, a logical strategy is to partition the 
domain in such a way that it minimizes the surface 
area of each sub-domain relative to its volume. This 
keeps the computation-to-communication ratio 
high. In this study, two-dimensional decomposition 
is chosen. This involves assigning each sub-domain 
to a processor and solving the equations for that sub-
domain on the respective processor. With the two 
dimensional decomposition, no global information 
is required at any particular grid point and inter-
processor communications are required only at the 
boundaries of the sub-domains. The inner-border 
of a sub-domain requires the outer-border of the 
adjacent sub-domain during a time-step because of 
the spatial discretization [16], [17], [18].

algORIThm DesIgNIv. 
In our work, the domain decomposition method 

is used to parallelize the tsunami model. In this 
method, the parallel algorithm is very similar to the 
serial algorithm with some additional routines added 
to facilitate the communication between processors. 
Using this method, all the processors involved in 
the parallel calculations basically perform the same 
computational operations. The only difference is in 
the data being processed in each processor.

 Rectangular 
physical or 

computational 
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Fig. 2.  Three possible ways of decomposing a rectangular domain. The 
numbers in the sub-domains represent the processor number. 
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Two grid schemes, a 12 node (4 x 3) grid system 
and a 48 node (8 x 6) grid system, are used to 
parallelize the tsunami model with a domain size of 
(900 x 1226). Portions of the domains are assigned 
to each of the worker nodes, as illustrated in Fig. 3 
where each sub-domain is labeled with a processor 
(worker) number. Snapshots of the free surface 
evolution are shown in Fig. 4. Data for each sub-
domain is stored with each processor including 
water depth, coordinates, and initial disturbance.
This data is read by each of the workers in a pre-
processing stage i.e., prior to initiating the time-
integration loop. Since the model updates the 
solution explicitly using local data, each processor 
works independently of the others but requires 
data from neighbouring workers to update solution 
along sub-domain boundaries. The exchange 
of data between processors occurs several times 
per time-step. There are two key features to this 
exchange: First, only data along the boundaries 
between processors is exchanged. Second, each 
processor is only required to communicate 
with at most four other processors. The domain 
decomposition is performed with this second feature 
in mind to avoid communications between more 
than four other processors.

Communication occurs between two adjacent 
processors during message passing. In passing the 
data from one processor to another, an efficient 
and safe communication must be developed. To 
efficiently exchange the data between adjacent 
processors, the data is first stored in a contiguous 
memory prior to executing the sending processes. 
At the same time contiguous memories of the same 
size as used in the sending processes are created to 
receive the data from the sending processes. At this 
point, the data is ready for sending and receiving 
processes. 

TaBle I
RUN TIme IN seCONDs (WOT – WIThOUT ThReaD; WT – WITh ThReaD)

Nodes MPI
wot                         wt

C/Linda
wot                          wt

12   9686.54        11053.54                                           2743.74            3297.78                                         
48 11934.38        10273.73                                     3183.43            2845.34                       

In this model, message passing occurs four 
times per time-step and the MPI function, ``MPI_
Sendrecv’’, and the C/Linda operations “in” and 
“out” are used to perform the message passing 
between global nodes. This corresponds to eight 
messages per time- step per processor independent 
of the number of processors being used. Many more 
messages are sent during pre-processing, but these 
are ignored for run-time analysis purposes since 
time integration is by far the most time consuming 
element of the program. The parallel algorithm is 
outlined below.

1. Decompose rectangular domain into load 
balanced rectangular sub-domains where the 
width and length of a rectangular sub-domain 
are W/Nw approximately, and L/Nl respectively, 
where W and L are the width and length of 
domain, and N = Nw*N1 is the number of 
processors to be used in the (Nw x N1) grid scheme. 

 2. Specify parallel language related  parameters, 
such as locations, neighbours, sub-domain sizes, 
and file names, of processors. Location of  kth 
processor is (rk, ck), where rk = k/gdm1 + 1 and 
ck = k - (rk - 1)* gdm1 + 1 with gdm1 and gdm2 
being the dimensions of the grid. In the four by 
three grid scheme, gdm1 = 3 and gdm2 = 4, and 
in the eight by six scheme, gdm1=6 and gdm2=8. 
For k = 0, 1, 2, 3, 4, . . . . . . . , (gdm1*gdm2 -1), 
define  northk, southk, eastk, and westk to be the 
neighbours located in the side of north, south, 
east and west of  the kth processor, then: 

  northk = k - gdm1  if rk > 1
  southk = k + gdm1  if rk <gdm2
  eastk = k + 1  if ck < gdm1
  westk = k - 1  if ck > 1

 3.  Input data and initial conditions: 

Each processor, (a) Pk , reads the 
water depth, coordinates, and 
initial disturbance from the 
text file assigned in step 2. 

(b) Each processor, Pk , exchanges sub-
domain boundary data from  eastk to 
westk, from westk to eastk, from northk 
to southk , and form south, to northk, 
in oder.                        

  
4. Set parameters and coefficients used at the open 

sea boundary. 

5. Repeat the following steps for the pre-defined 
time-steps: 

(a) Each processor, Pk, exchanges sub-
domain boundary data from eastk to 
westk. 

(b) Each processor, Pk, exchanges sub-
domain boundary data from northk 
to southk

(c) Computation of the equation of 
continuity.

(d) Setting of the open sea boundary 
condition.
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(e) Each processor, Pk , exchanges sub-
domain boundary data from westk to 
eastk. 

(f) Each processor, Pk , exchanges sub-
domain boundary data from southk 
to northk.

 
6. Gather computed results among all processors. 

7. Compute the output on processor,  where both  
are equal to null.

ImplemeNTaTIONv. 
Data is partitioned by sub-domains, where a four 

by three grid scheme and an eight by six grid scheme 
are used for the parallel implementation of this 
model. In each of the grid schemes, there are four 
parallel variations: (1) distributed memory without 
threads; (2) distributed memory with threads; (3) 
virtual shared memory without threads; (4) virtual 
shared memory with threads. Implementations use 
the Message Passing Interface (MPI) library [11], the 
C/Linda [12] and the pthread library [13].

The mixed-mode programming model which uses 
thread programming in the shared memory layer and 
message passing programming in the distributed 
memory layer is a method commonly used to utilize 
the hierarchy of memory resources efficiently [9]. In 
our mixed-mode programming model, MPI is used 
for the data communication between the global nodes, 
and within each MPI process, pthreads are used. In 
the virtual shared memory mixed-mode approach, 
C/Linda is used for the data communication 
between the global nodes, and within each 
C/Linda process, pthreads are used.

These four algorithms have been implemented 
on the Monolith cluster of Nordugrid [23] which 
consists of a high speed backbone interconnecting 
multi processor nodes. The Monolith cluster has 
396 nodes, all of which are i686 architecture with 
2.20GHz Intel(R) XEON(TM) processors, dual 
processor nodes and 2048MB per node main 
memory and 512KB cache. The operating system is 
Linux version 2.4.34-cap1-smp.

evalUaTIONvI. 
Table I shows the timing values for the 

eight scenarios arising from the four parallel 
variations of the algorithm mentioned above. 
Consider the four by three grid scheme, with 
both threading and non-threading. The parallel 
algorithms for the virtual shared memory exhibit 
better performance than the algorithms for 

distributed memory. Though the virtual shared 
memory implicitly passes messages, the replication 
management subsystem has been optimized in 
C/Linda compared to MPI [10], to yield better 
performance.

In the four by three grid scheme, in both scenarios 
for distributed and virtual shared memory, non-
threading algorithms exhibit better performance than 
threading algorithms. One possible explanation for 
this is that each node keeps nine, two dimensional 
floating point type arrays of size equal to the sub 
domain size. Because of the memory limitations 
it is not possible to declare local two-dimensional 
arrays for threads, causing all threads in a node 
to concurrently use global arrays for their own 
computations.

Now consider the eight by six grid scheme. 
Here too, for both threading and non-threading, the 
parallel algorithms for the virtual shared memory 
exhibit better performance than the algorithms for 
distributed memory. In contrast to the previous 
instance, both algorithms for distributed and 
virtual shared memory, the threading algorithms 
exhibit better performance than non-threading 
algorithms. This is because that the sub domain size 
allocated to each node is half size of sub domain 
size of the smaller grid scheme of four by three 
size. The local two dimensional floating point type 
array allocation for threads in a node is now possible 
compared to the four by three grid system. Therefore, 
since all threads of a node work independently, 
the threading parallel algorithm shows better 
performance than non-threading parallel algorithm. 

Among the parallel variations not using threads 
in both memory architectures, the four by three grid 
scheme shows better performance than eight by six 
grid scheme. This is due to the ratio of computation 
time to communication overhead decreasing faster 
for domains with smaller size. However, when the 
task is scaled up, say up to eight by six grid system, 
owing to the smaller sub-domain sizes aligning 
with the available memory in the node, the threaded 
versions become more efficient in both MPI and 
C/Linda implementations. In both threading and 
non-threading environments, the C/Linda version 
exhibits better performance than the MPI version.

CONClUsIONvII. 
This paper has presented eight different parallel 

implementations of a tsunami model based 
on the shallow water equations. Each of these 
implementations use a mixed-mode programming 
model from thread based shared memory, to 
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distributed memory and finally to virtual shared 
memory. Owing to node memory limitations, 
scalability issues become paramount, and threading 
becomes a significant bottleneck if sufficient node 
memory is not available, offsetting the middleware 
advantages. With sufficient node memory however, 
C/Linda with threads outperforms MPI with threads, 
indicating the effectiveness of extracting parallelism 
over virtual shared memory, distributed memory 
and shared memory multiple levels for this class of 
problems.
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