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1. External approaches (data level): attempt to balance

the dataset by either removing the majority class

samples (undersampling) or generating minority

class samples (oversampling).

 2. Internal approaches (algorithmic level): modify the

underlying classification algorithm while keeping

the original dataset intact through cost-sensitive

learning or ensemble-based learning.

 3. Hybrid approaches: combine internal and external

approaches.

 

   

Among the three approaches used to address the data 

imbalance, external approaches are favored over internal 

approaches because they are more generalizable as a result of 

classifier independence

 

[3]. The primary objective of any 

external approach is to balance the number of samples in the 

dataset classes, which is achieved through resampling. The 

imbalance that exists between the dataset classes due to the 

scarcity of data in one or more classes is called the between-

class imbalance. 

 

   

Oversampling and undersampling are two popular 

resampling methods used to balance imbalanced datasets by 

addressing the between-class imbalance. Oversampling poses 

a risk of overfitting by generating synthetic data resembling 

the original samples or incorrectly positioning them. On the 

other hand, undersampling may exclude crucial information 

and suffer from data scarcity for the minority class. To 

mitigate the fundamental drawbacks of these methods, 

numerous studies have been conducted over time. Their 

findings have led the advancement of resampling techniques, 

moving beyond basic methods like random selections and 

incorporating more sophisticated approaches along with 

statistical and probabilistic methods.

  

   

While oversampling carries the risk of overfitting, early 

detection during training is possible using simple approaches 

like a well-structured train-test split and monitoring changes 

in testing error compared to training error. Conversely, 

excluding essential information through undersampling can 

result in misclassifications when the model is tested on

 

unseen

 data samples. Mohammed et al. [4] confirmed these 

observations by evaluating oversampled and undersampled 

datasets using advanced classifiers. Their conclusions 

indicate that, when compared to undersampling, 

oversampling typically yields more accurate classification. 

This serves as motivation for this study to focus on 

oversampling when formulating its strategy.

 

This paper is a 

follow-up to our previous publication [5], focusing on 

addressing a number of critical gaps identified in that work.

 

   

The rest of this paper is organized as follows. Section II 

provides an overview of the related work, highlighting their 

strategies when performing oversampling. Section III 

presents the

 

proposed algorithm with an in-depth explanation

 of its steps. Section IV presents our evaluation framework and 

 Abstract— The “Data Imbalance Problem” is a well-defined and 

challenging problem in the Machine Learning domain addressed 

throughout the past decades. With the emergence of Big Data, 

addressing the data imbalance has reemerged as a trending topic 

because traditional solutions for this problem are inadequate 

with the increasing volume and dimensionality of data. There 

exist a wide range of solutions, from data-level to algorithmic-

level, proposed to address the data imbalance problem. Among 

these approaches, data-level approaches are popular among the 

scientific community because of their inherent classifier 

independence, making them generalizable over many different 

domains. Oversampling is one such data-level technique 

frequently explored by researchers, especially in extreme 

imbalance scenarios. This study introduces SOM-XG, an 

oversampling technique capable of addressing even the extreme 

imbalance scenarios. The proposed technique utilizes two Self-

Organizing Maps and exploits their properties to address the 

within and between class imbalances and the decision boundary 

preservation, generating new synthetic samples that are 

topologically similar to the original samples in the dataset. The 

empirical results obtained for datasets with imbalance ratios 

ranging from 1.38 to 130, the number of features ranging from 3 

to 300, and the number of samples ranging from 150 to 145,751, 

oversampled using SOM-XG, demonstrate enhanced 

classification results while consistently outperforming other 

state-of-the-art techniques.
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I. INTRODUCTION

In the age of big data,  data mining and  k nowledge discovery 

h   ave become essential for making informed judgments. 

Classification analysis is a widely utilized data mining 

method applicable to numerous  market and technical 

challenges like sentiment analysis, medical diagnosis, 

customer churn prediction, and recommendation systems. 

This involves instructing classifiers to distinguish between 

distinct problem-representing classes [1]. However, common 

state-of-the-art classifiers, when utilized for these tasks, only 

perform well with uniformly distributed data. Their focus is 

on accuracy enhancement without considering data dispersion 

[2]. However, in practice, data collected for classification 

analysis is frequently imbalanced in terms of class 

distribution.

The appro aches used to overcome the data imbalance 

p   roblem can be categorized into three groups. 
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the experimental setup. Section V provides the results 

obtained, followed by discussion and conclusion sections . 

II. RELATED WORK 

   When investigating studies on oversampling, SMOTE [6] 

and its variants can be identified as the most extensively 

utilized strategies in academia. In SMOTE (Synthetic 

Minority Oversampling Technique), a minority class sample 

is randomly selected to generate a new synthetic sample that 

lies along the line segment that joins the selected sample and 

one of its K nearest neighbors. As samples are not duplicates 

of already existing data, SMOTE has a lower risk of 

overfitting compared to random oversampling. However, due 

to random selection, the minority regions that are densely 

populated get further concentrated, and regions that are 

sparsely populated remain sparse. SMOTE is also sensitive to 

noise as a sample generated by combining an existing noisy 

sample with its nearest neighbor is more likely to be noisy.  

   [7]-[10] are some of the variants of SMOTE introduced to 

address its limitations. When exploring these techniques, it is 

evident that they try to control the areas of sample generation 

and remove noise by enhancing the output of SMOTE. The 

techniques focus on preserving the decision boundary that 

separates the classes, which is a major limitation of vanilla 

SMOTE as it frequently distorts class separation, generating 

samples that overlap with the majority class. The evaluation 

results obtained by these techniques emphasize the 

importance of decision boundary preservation when 

formulating a new oversampling technique. 

   When considering real-world datasets, there exist situations 

where the minority class is scattered into multiple dense or 

sparse disjuncts. This is called the within-class imbalance, 

and it can result in the lack of representation of important 

characteristics in the minority class, distorting its distribution. 

Cluster SMOTE [11], DBSMOTE [12], MWMOTE [13], and 

K-means SMOTE [14] are popular oversampling techniques 

based on clustering and density estimation. They locate areas 

within the data space where oversampling is most effective, 

making it possible to address the within-class imbalance by 

manipulating the spatial location of the sample distribution. 

   Another common observation that can be made regarding 

many available oversampling techniques is that they operate 

in the Euclidean space. However, as real-world data are often 

high-dimensional, the heuristics based on Euclidean distance 

become meaningless when operating on them. This effect is 

referred to as the “curse of dimensionality” [15], which can 

be alleviated using dimensionality reduction. Among 

resampling techniques that incorporate dimensionality 

reduction, Self-Organizing Maps (SOM) [16] based 

resampling techniques have been actively investigated in the 

scientific community in recent years. 

   Douzas and Bacao [17], Vannucci and Colla [1], and Zhang 

et al [18] use SOMs to generate a 2D representation of the 

input state before performing oversampling. Douzas and 

Bacao [17] propose Self-Organizing Map based oversampling 

(SOMO) that uses the density of minority class samples to 

filter out clusters generated by the SOM algorithm. Synthetic 

samples are generated within these identified clusters and 

between neighboring clusters using SMOTE, addressing the 

within and between class imbalances. [1] presents a hybrid 

resampling technique combining SOM and genetic 

algorithms, where two SOMs are used for oversampling and 

undersampling, respectively. Zhang et al [18] address the  

Fig. 1 - High-level overview of SOM-XG. 
 

clutter suppression in search radars and introduce a SOM-

SMOTE oversampling technique to alleviate the imbalance in 

the clutter dataset. Based on these studies, it can be assumed 

that the ability of SOMs to address the within-class imbalance 

as a clustering algorithm and reduce the dimensionality 

maintaining the input topology are the main reasons for its 

popularity in this context. 

   In summary, when analyzing oversampling techniques that 

address the data imbalance problem, it is possible to identify 

several key constraints that contribute to their success: (1) 

Addressing the between-class imbalance, (2) Addressing the 

within-class imbalance, and (3) Preserving the boundary 

during sample generation. Furthermore, aside from 

addressing the above constraints, it is also preferable to pay 

special attention to the curse of dimensionality. The proposed 

oversampling technique utilizes SOMs due to its ability to 

address both within-class and between-class imbalances from 

the perspective of a clustering algorithm and imbalance in 

higher-dimensional data from the perspective of a topology-

preserving dimensionality reduction algorithm. 

   Our initial work [5] contains a more detailed description of 

the related research and how the aforementioned constraints 

were derived based on the strategies introduced by the authors. 

Therefore, we recommend referring to it for a comprehensive 

understanding of the literature, its limitations, and potential 

research directions.   
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III. METHODOLOGY 

The proposed oversampling technique consists of two 

phases: Sample extraction, and Sample generation. During the 

sample extraction phase, minority class samples are extracted 

from the original dataset to create a new dataset that contains 

safe minority class samples suitable for oversampling. These 

minority class samples are then used to create new synthetic 

samples in the sample generation phase. Figure 1 gives a high-

level overview of the SOM-XG oversampling technique.  

 

A. Sample Extractor 

The Sample Extractor is used to extract safe minority class 

samples suitable for generating new synthetic samples. In this 

context, safe minority class samples refer to the minority 

samples that reside in areas with high minority class density 

and are not noisy. Due to the topology-preserving property 

and the clustering nature of the SOM, it is possible to identify 

the occurrences of multiple disjuncts of minority class 

samples with varying densities more accurately if they exist. 

Algorithm 1 presents the pseudo-code of the sample extractor. 

 

Algorithm 1 Sample Extractor Pseudo Code 

Input: X, y, num_rows, num_cols, num_iterations, 

learning_rate, sigma 

Output: Xmin, ymin 

1. Normalize the input data 

2. Cluster the normalized data using SOM 

3. Filter safe minority class samples 

3.1. Filter safe non-boundary minority class 

samples 

3.2. Filter safe boundary minority class samples 

4. Aggregate the filtered minority class samples to 

form a new dataset 

5. return Xmin, ymin 

 

   Inputs: The Sample Extractor expects seven input 

parameters, five of which are SOM parameters. X and y 

represent the data samples and their corresponding labels. The 

SOM parameters are num_rows representing the number of 

rows in the grid, num_cols representing the number of 

columns in the grid, num_iterations representing the number 

of training iterations, learning_rate representing the initial 

learning rate, and sigma representing the spread of the 

neighborhood function. The grid of the map is fixed to be 

‘hexagonal’, and the neighborhood function is fixed to be 

‘Gaussian,’. 

 

   Normalize the input data: The input data is normalized 

before training the SOM such that each feature lies between 

[0, 1].  

 

   Cluster the normalized data using SOM: In this step, the 

normalized data is clustered using the SOM. Each neuron in 

the SOM grid is considered a separate cluster. Therefore, 

number of clusters = num_cols × num_rows.  
 

   Filter safe minority class samples: The safe minority class 

samples are divided into two groups depending on where they 

are placed on the map. 

1. Samples that reside in areas with high minority class 

density 

2. Samples that are not noise but reside in areas with 

low minority class density 

   During the initial filtering process, the intuition is that 

minority class samples residing in areas with high minority 

class density (the number of minority samples is greater than 

the number of majority samples) are naturally most suitable 

for generating new synthetic samples. Therefore, as depicted 

in Figure 2 (A), clusters with high minority class density are 

filtered out, and minority samples that reside in the filtered 

clusters are extracted as safe minority class samples.  

   The remaining minority class samples after the initial 

filtering include minority class samples that reside in areas 

with high majority class density, minority class samples in the 

boundary regions, and minority class samples that are noise. 

In order to filter safe minority class samples out of these, a 

Nearest Neighbors approach is used. For each minority class 

sample in the remaining clusters, the three nearest neighbors 

are considered. If at least two of the three nearest neighbors 

are minority samples, the minority class sample is considered 

safe and filtered out.  

   For example, in Figure 2 (B), minority samples p and q 

represent a sample in a cluster with a high majority class 

density, and a noisy sample, respectively. When considering 

the three nearest neighbors of p, it can be seen that two 

samples are of the minority class, and one sample is of the 

majority class. Therefore, p is considered a safe minority class 

sample and extracted. However, when considering q, all three 

neighbors are majority class samples. Therefore, it is not 

considered a safe sample and hence, not extracted. 

 

 
Fig. 2 - Sample Extractor. (A) Highlighted nodes are the clusters with high 

minority class density. (B) The remaining nodes after the clusters with high 

minority class samples are filtered out. 

 

   Aggregate the filtered minority class samples to form a 

new dataset: The filtered minority class samples are 

combined to form a new dataset that can be used as input to 

the Sample Generator.  

 

B. Sample Generator 

   The Sample Generator uses the minority class samples 

extracted from the Sample Extractor and generates new 

synthetic samples between them using SMOTE. Similar to the 

extraction phase, the generation phase also utilizes a SOM 

when generating new synthetic samples so that the 

synthetically generated samples are topologically similar to 

minority samples in the original dataset. The pseudo-code of 

the Sample Generator is demonstrated in Algorithm 2. 
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An important design decision of the proposed algorithm is 

using a threshold (lower limit) to determine the number of 

samples required to be extracted from the Sample Extractor to 

use in the Sample Generator. If the number of extracted 

samples is less than the threshold, the entire minority class is 

used as input to the Sample Generator, ignoring the output of 

the Sample Extractor. Setting such a threshold implicitly 

declares the minimum number of samples required for 

oversampling, but there is no prior research conducted 

regarding this. After performing multiple experiments with 

the selected datasets, 25 was selected as the threshold across 

all datasets in the presented study. 

 

Algorithm 2 Sample Generator Pseudo Code 

Input: Xmin, ymin, num_rows, num_cols, num_iterations, 

learning_rate, sigma, resample_ratio 

Output: Xres, yres 

1. Normalize the minority class samples 

2. Cluster the normalized minority class samples using 

SOM 

3. Filter clusters with rich minority class density 

4. Find neighboring clusters and calculate inter-cluster 

and intra-cluster densities 

5. Perform resampling: 

5.1. Perform intra-cluster oversampling 

5.2. Perform inter-cluster oversampling 

6. Aggregate the filtered minority class samples to form 

a new dataset 

7. return Xres, yres 

 

   Inputs: The Sample Generator expects eight inputs, five of 

which are SOM parameters as same as the parameters of the 

Sample Extractor. Among other parameters, Xmin and ymin 

represent the minority class samples and their corresponding 

labels, and resample_ratio represents the ratio of intra-cluster 

and inter-cluster samples to generate. The resample_ratio 

takes a value between 0 and 1, dividing the total number of 

samples to generate between intra-cluster and inter-cluster 

samples. For example, if the resample_ratio is 0.2, 20% intra-

cluster samples and 80% inter-cluster samples are generated, 

such that the number of minority class and majority class 

samples are equal. This metric adds extra variation to the 

synthetic sample generation process to facilitate datasets with 

different properties. 

 

   Normalize the minority class samples: Features are 

normalized such that they lie between [0, 1]. 

 

   Cluster the normalized minority class samples using 

SOM: In this step, the normalized minority samples are 

clustered using the second SOM, where each neuron is 

considered a separate cluster.  

 

   Filter clusters with rich minority class density: In the 

clusters generated after training the SOM, there can be 

clusters with no minority class samples or very few minority 

class samples. These clusters carry no useful information and 

are considered to be unrepresentative.  Therefore, clusters 

with rich minority class density are filtered out using a 

threshold, filter_ratio, which is calculated using the number 

of minority class samples ( |Xmin| ) and the number of neurons 

in the SOM grid (num_rows × num_cols) as shown in 

Equation 1. 

 

𝑓𝑖𝑙𝑡𝑒𝑟_𝑟𝑎𝑡𝑖𝑜 =  
|𝑋𝑚𝑖𝑛|

𝑛𝑢𝑚_𝑟𝑜𝑤𝑠 ×  𝑛𝑢𝑚_𝑐𝑜𝑙𝑠
                                                  (1) 

 

   The above equation calculates the number of minority class 

samples that belong to each neuron (winner neuron) if the 

samples are equally divided.  

 

   Find neighboring clusters and calculate inter and intra-

cluster densities: From the filtered clusters, the neighboring 

clusters are identified based on the Euclidean coordinates of 

the clusters (neurons). Since the topology of the map is 

‘hexagonal,’ each cluster can have up to a maximum of six 

neighboring clusters. These neighboring clusters are 

processed in pairs as the inter-cluster sample generation is 

performed between two neighboring clusters. 

   The intra-cluster density is calculated similarly to the 

approach followed by [17] in the SOMO algorithm based on 

the number of samples in the cluster ( |Ci| ) and the average 

Euclidean distance between all the samples belonging to the 

cluster. The intra-cluster density of a cluster i can be 

represented as shown in Equation 2. 

 

𝑑𝑖𝑛𝑡𝑟𝑎(𝑖)  =  
|𝐶𝑖|

[
1

|𝐶𝑖|
 ×  ∑   

𝑝,𝑞 ∈ 𝐶𝑖
(√∑  𝑛

𝑗=1 (𝑝𝑗  − 𝑞𝑗)2)]
2                              (2) 

 

   Where, |Ci| = size of the cluster i (number of samples), n = 

number of features in the dataset, and p and q are two samples 

in cluster Ci. 

   When calculating the inter-cluster density between two 

neighboring clusters, the individual intra-cluster densities of 

the two clusters are simply added together. Equation 3 

demonstrates how the inter-cluster density between clusters i 

and j are calculated. 

 
𝑑𝑖𝑛𝑡𝑒𝑟(𝑖, 𝑗) =  𝑑𝑖𝑛𝑡𝑟𝑎(𝑖)  + 𝑑𝑖𝑛𝑡𝑟𝑎(𝑗)                                                                 (3) 

   Perform resampling: The resampling of the minority class 

is performed in two phases: intra-cluster oversampling, where 

new samples are generated within each filtered cluster, and 

inter-cluster oversampling, where new samples are generated 

between neighboring clusters if present.  

 

   Intra-cluster oversampling: Intra-cluster oversampling 

refers to the sample generation in each filtered cluster by 

taking the density of the cluster into account. Each filtered 

cluster is assigned a weight in such a way that the weight is 

directly proportional to the density of the cluster. i.e., clusters 

with higher density will be assigned a higher weight. More 

samples are generated in clusters with higher weights 

compared to clusters with lower weights as new samples can 

be generated with more confidence in areas where the 

minority class density is high. The weight (W) assignment rule 

of a cluster i can be expressed as shown in Equation 4, Where 

n = num_rows × num_cols. 

 

𝑊𝑖  =  
𝑑𝑖𝑛𝑡𝑟𝑎(𝑖)

∑  𝑛
𝑗=1 𝑑𝑖𝑛𝑡𝑟𝑎(𝑗)

                                                                                          (4) 
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   The number of samples (S) to generate in a cluster is 

determined based on the weight assigned to the cluster. The 

number of samples generated in cluster i can be calculated 

using Equations 5 and 6. 

 
𝑆𝑖  =  𝑖𝑛𝑡(𝑊𝑖 × 𝑇)                                                                                                 (5) 

Where 

𝑇 = { |𝑋𝑚𝑎𝑗|,                                           𝑖𝑓 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 =  ∅ 

|𝑋𝑚𝑎𝑗|  ×  𝑟𝑒𝑠𝑎𝑚𝑝𝑙𝑒_𝑟𝑎𝑡𝑖𝑜,    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒        
      (6) 

   As the total number of samples that need to be generated (T) 

is divided among inter-cluster and intra-cluster oversampling, 

resample_ratio is set as a hyperparameter and tuned during 

experiments. 

   Finally, the required number of minority samples for each 

cluster is generated by applying SMOTE. Depending on the 

number of minority class samples in the cluster, the 

k_neighbors parameter of SMOTE is changed between 1, 3, 

and 5. 

   The intra-cluster sample generation process is illustrated in 

Figure 3. It can be observed that there are 28 minority class 

samples present with 7 neurons in Fig. 3 (A). Based on the 

filter_ratio calculation, a cluster should have at least 4 

minority class samples to become a candidate for intra-cluster 

oversampling. As a result, only cluster C is filtered out of the 

initial set of clusters. Fig. 3 (B) represents how SMOTE is 

applied to generate new synthetic samples in a cluster. Since 

the number of samples in cluster C is greater than 5, SMOTE 

is applied with the k_neighbors parameter set to 5. 

 
Fig. 3 - Intra-cluster sample generation. 

 

   Inter-cluster oversampling: In inter-cluster oversampling, 

minority samples are generated between pairs of neighboring 

clusters. Similar to the weight assignment step in intra-cluster 

oversampling, each pair of neighboring clusters is assigned a 

weight based on the density between them, and synthetic 

samples are generated so that more samples are generated 

between neighboring pairs with higher weights. Both weight 

and sample calculations can be expressed with Equations 7 

and 8.   

 

𝑊𝑖,𝑗  =  
𝑑𝑖𝑛𝑡𝑒𝑟(𝑖, 𝑗)

∑  𝑛
𝑗=1 𝑑𝑖𝑛𝑡𝑟𝑎(𝑗)

                                                                                     (7) 

 

𝑆𝑖,𝑗  =  𝑖𝑛𝑡(𝑊𝑖,𝑗 × [|𝑋𝑚𝑎𝑗|  ×  (1 − 𝑟𝑒𝑠𝑎𝑚𝑝𝑙𝑒_𝑟𝑎𝑡𝑖𝑜)])                          (8) 

 

   During sample generation between two neighboring clusters, 

a random sample is selected from each cluster, and a new 

synthetic sample is generated between the selected samples 

by applying SMOTE. This action is graphically represented 

in Fig. 4. 

 

 
Fig. 4 - Inter-cluster sample generation.                                                    

 

The conclusion of the sample generation phase results in a 

new oversampled dataset with a balanced distribution of 

majority and minority classes. 

IV. EVALUATION FRAMEWORK 

A. Metrics 

   As it is required consider the independent accuracy of both 

the majority and minority classes when evaluating 

imbalanced data, this study uses three imbalanced learning 

metrics to evaluate the performance of classifiers on 

resampled datasets: (1) F-Measure, (2) Area under the 

Receiver Operating Characteristics curve (AUC-ROC), and 

(3) Matthews Correlation Coefficient (MCC) [19]. Among 

the three metrics, the AUC-ROC score is used as the primary 

metric. 

 

B. Datasets 

Ten publicly available datasets from UCI [20], KDD Cup 

[21], and LIBSVM [22] repositories are selected to conduct 

the experiments and evaluations. As a preprocessing step, all 

multivariate classification datasets are converted into binary 

classification by identifying a single minority class and 

combining the rest of the classes to form the majority class. 

An overview of the selected datasets, with the selected 

minority class (Target), repository, number of features, 

number of samples, and the imbalanced ratio (IR), are 

presented in Table I. 

 

C. Oversampling Methods and Classifiers 

   The performance of the formulated oversampling technique 

is compared and evaluated against Random Oversampling, 

SMOTE, K-means SMOTE, and SOMO. Among the above 

techniques, SOMO is considered the primary oversampling 

technique that SOM-XG is compared against, as both 

techniques are based on SOMs. The number of K nearest 

neighbors of SMOTE, K-means SMOTE, and SOMO are 

tuned with k_neighbors ∈ {2, 3, 4, 5}, and the 

distribution_ratio of the SOMO, which determines the ratio 

of intracluster/intercluster points generated, is set in the range 

[0.1, 0.9] with an interval of 0.1. For SOM-XG, apart from 

tuning the parameters of the SOMs, the resample_ratio is 

tuned in the range [0.1, 0.9] with an interval of 0.1.  

   The primary advantage of any data level resampling 

technique is the inherent classifier independence. Therefore, 

after oversampling using the aforementioned techniques, the 

balanced datasets are classified using three different classifier  
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models: Logistic Regression Classifier (LRC), Gradient 

Boosting Classifier (GBC), and Decision Tree Classifier 

(DTC). Among the selected classifiers, LRC does not require 

any hyperparameters to be tuned. For GBC, max_depth ∈ {3, 

6, 9} and n_estimators ∈ {50, 100, 200}. In DTC, max_depth 

∈ {3, 6, 9}. 

 

D. Experimental Setup 

   The experiments are conducted in two stages due to 

computational limitations. Datasets 1 - 5 with smaller 

imbalanced ratios and dimensions (low imbalanced datasets), 

and datasets 6 - 10 with higher imbalanced ratios and 

dimensions (high imbalanced datasets) are evaluated 

separately in stages one and two, respectively. During low 

imbalanced dataset evaluation, a one-on-one comparison is 

conducted between SOM-XG and SOMO, and during high 

imbalanced dataset evaluation, SOM-XG is compared against 

other state-of-the-art oversampling techniques to determine 

its generalizability to higher-dimensional datasets 

   However, in the sample generator, as the SOM is trained 

only on minority data, the lower and the upper bounds are set 

to √𝑋𝑚𝑖𝑛 − 4  and √𝑋𝑚𝑖𝑛 + 4 , respectively, where 𝑋𝑚𝑖𝑛 

represents the minority class samples extracted through the 

sample extractor. 

   In the first evaluation stage, performance results are 

obtained for each dataset using stratified K-fold cross 

validation with K = 5. However, for the second stage of 

evaluation, results are derived using a stratified train test split 

due to the magnitude of data and the limitations in 

computational resources. The classifier parameters are tuned 

in each fold using the original data from the K-1 folds, 

forming a separate 5-fold cross validation, maximizing the  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AUC-ROC score. Finally, the tuned classifiers are trained on 

oversampled data and evaluated on the withheld fold of test 

data. The experimental procedure is carried out for all 

possible hyperparameters, maximizing the AUC-ROC score. 

 

E. Tuning the parameters of Self-Organizing Maps 

   The SOM implementation used in the algorithm is based on 

MiniSOM [23], and the parameters of the sample extractor 

and generator are tuned identically except for the grid size. 

The SOM is considered to have an equal number of rows and 

columns. The lower bound of this value is set to 

√|𝑋_𝑚𝑖𝑛𝑜𝑟𝑖𝑡𝑦| such that each neuron contains at least one 

minority class sample, and the upper bound is set to 

√|𝑋_𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦| .  These bounds are similar to the SOM 

training conducted in SOMO [17].  

   The number of iterations is set  with a lower bound of |𝑋| 
and an upper bound of (|𝑋| × 10), where X is the training 

dataset. For the initial learning rate, the lower bound is set to 

0.001 and the upper bound is set to 1. Sigma determines the 

spread of the neighborhood function, and its lower bound of 

is set to 1 and the upper bound is set to 
𝑚𝑎𝑥(𝑛𝑢𝑚_𝑟𝑜𝑤𝑠,𝑛𝑢𝑚_𝑐𝑜𝑙𝑠)

2.01
 . 

Dividing by 2.01 ensures that sigma is strictly less than half 

the dimensions of the map. For all three parameters, ten 

evenly placed values in the give interval are considered during 

tuning. 

   The sample extractor is tuned with the above parameters to 

reduce the Topographic Error, which assesses how well the 

SOM preserves the topology in a given dataset by determining 

the number of data samples not having the first and the second 

best matching units (BMU) adjacent to each other. Whereas 

Id Dataset Repository and Target IR Samples Features 

1 liver UCI, target: 1 1.38 345 6 

2 iris UCI, target: 2 2.00 150 4 

3 haberman UCI, target: 2 2.78 306 3 

4 libras_move UCI, target: 1, 2, 3 4.00 360 90 

5 ecoli UCI, target: pp 5.46 336 7 

6 web_page LIBSVM, target: minority 33.00 34,780 300 

7 ozone_level UCI, target: ozone 34.00 2,536 72 

8 Mammography UCI, target: minority 42.00 11,183 6 

9 protein_homo KDD CUP, target: minority 111.00 145,751 74 

10 abalone_19 UCI, target: 19 130.00 4,177 10 

TABLE I 
DATASETS 
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the sample generator is tuned to maximize the AUC-ROC 

value. 

V. RESULTS 

In the given tables, AUC represents the area under the ROC 

curve, F1 represents the weighted F1 score, and MCC 

represents the Matthews Correlation Coefficient. The bold 

figures indicate the best value of each metric. 

 

A. Low Imbalanced Dataset Evaluation 

   SOM-XG is evaluated on the low imbalanced datasets and 

compared with SOMO [17], which has outperformed other 

oversampling techniques during its evaluation. Table II 

present the results obtained by the two techniques when 

classified using LRC, GBC, and DTC. 

B. High Imbalanced Dataset Evaluation 

   In order to determine the generalizability and the 

adaptability to varying imbalance ratios, SOM-XG is 

evaluated on high imbalanced datasets and compared against 

existing state-of-the-art oversampling techniques. Tables III, 

IV, and V demonstrate the evaluation results. 

   Based on the evaluation results, especially with respect to 

the target metric AUC-ROC, it can be observed that SOM-

XG performs well on both low and high imbalanced datasets. 

It can also be seen that SOM-XG consistently outperforms all 

the other techniques when evaluated on the most imbalanced 

dataset (abalone_19), and datasets with the highest number of 

features (webpage), and samples (protein). This demonstrates 

the generalizability of SOM-XG to high dimensional and high 

imbalanced datasets.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    

 

 

 

 

 

 

 

 

 

 

 

 

Oversampler 

 

Metric 

Dataset 

liver iris haberman libras ecoli 

LRC 

SOMO AUC 0.669 0.750 0.640 0.611 0.897 

F1 0.666 0.664 0.744 0.739 0.901 

MCC 0.335 0.502 0.324 0.214 0.684 

SOM-XG AUC 0.676 0.750 0.729 0.629 0.910 

F1 0.677 0.600 0.745 0.595 0.900 

MCC 0.393 0.500 0.437 0.239 0.714 

GBC 

SOMO AUC 0.720 0.960 0.644 0.776 0.911 

F1 0.727 0.961 0.733 0.861 0.935 

MCC 0.442 0.914 0.333 0.584 0.803 

SOM-XG AUC 0.722 0.960 0.653 0.831 0.935 

F1 0.727 0.961 0.720 0.896 0.957 

MCC 0.446 0.914 0.344 0.690 0.844 

DTC 

SOMO AUC 0.689 0.955 0.627 0.851 0.863 

 F1 0.686 0.960 0.723 0.910 0.897 

 MCC 0.393 0.911 0.279 0.722 0.648 

SOM-XG AUC 0.712 0.965 0.668 0.840 0.923 

 F1 0.706 0.967 0.724 0.880 0.951 

 MCC 0.420 0.930 0.351 0.661 0.828 

TABLE II 

RESULTS OF LOW IMBALANCED DATASET EVALUATION 
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Oversampler 

 

Metric 

Dataset 

webpage ozone mammography protein abalone_19 

Random AUC 0.889 0.580 0.795 0.912 0.498 

F1 0.973 0.954 0.977 0.997 0.986 

MCC 0.605 0.168 0.532 0.832 -0.006 

SMOTE AUC 0.888 0.671 0.864 0.935 0.638 

F1 0.977 0.962 0.964 0.995 0.978 

MCC 0.641 0.226 0.472 0.753 0.153 

K-means SMOTE AUC 0.853 0.543 0.807 0.897 0.586 

F1 0.982 0.960 0.974 0.996 0.975 

MCC 0.678 0.162 0.503 0.776 0.090 

SOM-XG AUC 0.890 0.712 0.770 0.936 0.696 

F1 0.982 0.959 0.981 0.995 0.988 

MCC 0.691 0.355 0.567 0.752 0.320 

 

Oversampler 

 

Metric 

Dataset 

webpage ozone mammography protein abalone_19 

Random AUC 0.920 0.617 0.853 0.919 0.861 

F1 0.964 0.724 0.896 0.969 0.832 

MCC 0.561 0.080 0.280 0.347 0.142 

SMOTE AUC 0.923 0.619 0.855 0.921 0.866 

F1 0.964 0.727 0.898 0.970 0.839 

MCC 0.567 0.081 0.285 0.355 0.146 

K-means SMOTE AUC 0.865 0.621 0.852 0.844 0.677 

F1 0.972 0.730 0.938 0.981 0.851 

MCC 0.578 0.082 0.351 0.382 0.073 

SOM-XG AUC 0.923 0.691 0.842 0.926 0.885 

F1 0.966 0.701 0.949 0.966 0.863 

MCC 0.575 0.129 0.378 0.336 0.161 

TABLE IV 
RESULTS FOR GBC-CLASSIFIED OVERSAMPLING METHODS ON HIGH IMBALANCED DATASETS 

TABLE III 
RESULTS FOR LRC-CLASSIFIED OVERSAMPLING METHODS ON HIGH IMBALANCED DATASETS 
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Oversampler 

 

Metric 

Dataset 

webpage ozone mammography protein abalone_19 

Random AUC 0.795 0.678 0.835 0.929 0.776 

F1 0.946 0.893 0.885 0.979 0.851 

MCC 0.363 0.166 0.256 0.425 0.113 

SMOTE AUC 0.793 0.705 0.850 0.932 0.775 

F1 0.953 0.899 0.886 0.978 0.850 

MCC 0.390 0.194 0.268 0.419 0.112 

K-means 

SMOTE 

AUC 0.775 0.668 0.788 0.878 0.602 

F1 0.958 0.907 0.934 0.989 0.882 

MCC 0.402 0.168 0.289 0.532 0.046 

SOM-XG AUC 0.819 0.777 0.809 0.940 0.893 

F1 0.956 0.907 0.947 0.979 0.874 

MCC 0.431 0.265 0.344 0.438 0.169 

VI. DISCUSSION 

The algorithm proposed in this study is based on the three 

constraints discovered during our initial review of 

oversampling techniques [5]. The three constraints, 

addressing the within-class imbalance, between-class 

imbalance, and preserving the decision boundary when 

generating new synthetic samples, define the conditions that 

should be satisfied to achieve high classification performance 

when formulating an oversampling technique. 

In this study, the between-class imbalance is addressed by 

generating minority class samples such that the number of 

minority and majority class samples is equal in the dataset. 

Irrespective of the technique used, addressing the between-

class imbalance is the fundamental motivation of data level 

approaches. When addressing the within-class imbalance, it is 

evident from previous studies that clustering-based 

techniques are more prominent in the scientific community 

[11]-[14]. Making use of the inherent clustering nature of the 

SOM, this research addresses the within-class imbalance by 

using intra-cluster oversampling to generate synthetic 

samples within independent disjuncts of minority class 

samples and inter-cluster oversampling to generate synthetic 

samples within neighboring disjuncts of minority class 

samples.  

Among the SOM-based oversampling techniques proposed 

to address the data imbalance problem, SOMO [17] has been 

successful in addressing both between and within-class 

imbalances through inter-cluster and intra-cluster 

oversampling. However, in this research, we adopt a different 

strategy to perform oversampling by using only the minority 

class samples to train the SOM, which allows us to get a more 

pure representation of the minority class without the influence 

of the majority class. Furthermore, contrary to the procedure 

followed by SOMO when determining the number of samples 

to generate in areas with low and high minority class densities, 

in this study, more samples are generated in areas with high 

minority class density as there is a high certainty of minority 

samples in these areas. 

Another important aspect of this research is to determine 

the ability of the proposed oversampling technique to handle 

datasets of high dimensions. It can be observed from the 

consistent results obtained by the proposed oversampling 

technique on highly imbalanced datasets that it is undoubtedly 

capable of handling datasets with a large number of features 

as well as a large number of samples. 

A major concern that arises when using SOMs or any other 

clustering algorithm for oversampling is determining how to 

preserve the decision boundary when generating synthetic 

minority class samples in the boundary regions.  

In the proposed oversampling technique, the decision 

boundary preservation is achieved through the sample 

extraction phase. The Sample Extractor only extracts the 

samples occurring in areas of high minority class density and 

ignores the minority samples that could potentially be noisy 

or occur in the vicinity of majority class samples (samples in 

the decision boundary). Furthermore, minority class samples 

are again filtered during sample generation, making sure 

synthetic samples are generated only among topologically 

similar samples that occur in areas with rich density. This 

procedure preserves the decision boundary by preventing the 

generation of noisy samples around it.  

TABLE V 
RESULTS FOR DTC-CLASSIFIED OVERSAMPLING METHODS ON HIGH IMBALANCED DATASETS 
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In summary, based on the evaluation results achieved by 

the proposed oversampling technique, it can be concluded that 

it is indeed possible to use SOMs to formulate more robust 

oversampling techniques, addressing the constraints that 

could lead to high classification performances along with the 

curse of dimensionality. Even though boundary preservation 

is not a straightforward task in the proposed algorithm, we 

believe this could be a good foundation for future research to 

address the problem with more mathematical approaches. 

VII. CONCLUSION 

   This research presents a SOM-based oversampling 

technique that attempts to address the imbalance in datasets 

with varying imbalance ratios and dimensions. Ten publicly 

available datasets with imbalance ratios ranging from 1.38 to 

130, the number of features ranging from 3 to 300, and the 

number of samples ranging from 150 to 145,751 are evaluated 

on SOM-XG and compared with existing state-of-the-art 

techniques. The results obtained demonstrate the superiority 

of SOM-XG over existing techniques.  

   Two major limitations of SOM-XG are the inherent 

limitations related to SOMs, such as deciding the grid size, 

number of iterations and sigma, and the computational 

complexity introduced due to the use of two SOMs. Apart 

from having two SOMs, the SOM implementation not being 

GPU optimized also hinders the performance of the algorithm. 

Another limitation of the study is using a threshold to 

determine the number of samples required to perform sample 

generation. Even though the lower limit works with the 

datasets used for evaluation, this is not a generalized value 

that could be used with every dataset. Based on these 

limitations, it is evident that the use of two SOMs is a major 

bottleneck of the algorithm that affects its performance. One 

solution to this would be to replace the sample extraction 

phase with a more efficient technique. As the main intuition 

of the sample extraction phase is to preserve the decision 

boundary, using a mathematical/statistical approach that can 

achieve boundary preservation would also limit the algorithm 

to use a single SOM. Furthermore, it is also worth 

investigating other clustering techniques that can replace 

SOM in the proposed algorithm. 
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