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Abstract—In software project management, it is essential to 
estimate software size accurately since knowing the size of the 
program allows for more efficient p lanning, e stimation, and 
scheduling of its development. The conventional software size 
estimation approaches such as use of Function Points (FP) and its 
extensions often prove to be time consuming, resource-intensive, 
and thereby a costly exercise, demanding specialized human 
expertise. This has no difference when it comes to the modern 
software development paradigms like Component-Based Systems 
Development (CBSD). On the other hand, concerning Artificial 
Intelligence (AI), the large language model-based chat-bots like 
ChatGPT, Bard AI, DALL-E, and Midjourney are excelling 
at automating traditional human activities and interactions in 
various domains including software engineering. Among all these 
AI tools, ChatGPT has proven its applicability in many industries 
including software engineering, acquiring around 100% accuracy 
over other chat-bots. In this paper, we therefore developed and 
validated an innovative framework based on AI, to measure 
the size of a Component-Based Systems (CBS) using ChatGPT. 
The framework which consists of a set of prompts has been 
designed to expedite the size estimation process of a CBS 
using an extension of FP called Component Point (CP) while 
substantially reducing the need of human involvement and 
financial o utlay. O ur a im i s n ot o nly t o e nhance t he efficiency 
of software size estimation but also to conserve both time and 
financial r esources t hat w ould o therwise b e s pent o n practicing 
conventional approaches. We therefore envision that the proposed 
approach would revolutionize the landscape of software project 
management.

Index Terms—Artificial I ntelligence ( AI), C hatGPT, Compo-
nent Point (CP), Component-Based Systems (CBS), Software 
sizing

I. INTRODUCTION

In the ever-evolving world, the harsh reality of software
development has surfaced from the Standish Group Chaos
report in 2020 [1]. A staggering 50% of software projects
have failed to meet goals such as on-time delivery, budget
adherence, as well as while 19% suffered a total failure, result-
ing in the waste of valuable corporate resources. Addressing
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the challenges these software project failure is no small feat,
demanding specialized management skills and critical business
decisions.
Effective management of software products, processes, and
resources is essential to the success of software development
[2]. One pivotal aspect of this management is effort estimation,
a metric that serves as the backbone for estimating overall cost
and schedule. It is also noteworthy that the software develop-
ment effort estimation is significant in the early stages of the
Software Development Life Cycle (SDLC) [3], as these are the
formative stages the crucial decision-making activities, such
as planning, budgeting, and allocation of resources take place.
Unfortunately, erroneous estimations or planning missteps dur-
ing this crucial period can result in far-reaching consequences,
affecting not only software development projects but also their
broader outputs [3].
As a result, early estimation of the effort of software devel-
opment has become a paramount concern [4], [5]. Among
the various approaches-ranging from algorithmic models [6],
[7] to analogy-based methods [8], [9] and neural network
approaches [10], [11] proposed for estimating the software
development effort have one common fact: their dependence
on the size of the software as the primary effort driver for the
estimation. However, it is undeniable that the manual process
of measuring software size using conventional approaches,
such as the use of Function Point (FP) and its extensions,
is time-consuming, resource-intensive, and thereby costly, de-
manding specialized human expertise [12].
The way software applications are developed has fundamen-
tally changed as a result of the paradigm shift from conven-
tional software development to Component-Based Software
Development (CBSD). Practitioners have embraced the re-
wards of using CBSD over traditional software development
[13]–[15]. In addition, there are certain difficulties with CBSD
for techniques that assist with software development. The
applicability of most of the conventional software measures
to CBS have become limited, mostly as a result of the
components’ black-box nature. In response, [2] an extension
to FP, named Component Points (CP) has been proposed for
measuring the size of a CBS [2]. However, like FP analysis,
the CP counting process is also time-consuming, resource-
intensive, and therefore a costly exercise, demanding special-
ized human expertise. Therefore, there is little improvement
even when it comes to relatively modern software development
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paradigms such as CBSD. This underscores the pressing need
for innovative approaches that can streamline and automate
the software size measurement to reduce not only the time and
effort required but also the need for human expertise, while
enhancing the accuracy and efficiency of the process.
Recently, the trend towards AI-based automation has gained
tremendous momentum across the globe, driven by the
promise of cost reduction, human error minimization, risk
mitigation, and efficiency enhancement [16], [17]. In the
realm of AI, the large language model-based chatbots such as
ChatGPT, Bard AI, DALL-E, and Midjourney are excelling
in automating traditional human activities and interactions.
Among them, ChatGPT has demonstrated its applicability
in various domains including Software Engineering, and has
gained around 100% accuracy [18]–[23] outperforming oth-
ers.
Against this backdrop, we developed an innovative AI-based
framework that can be utilized to measure the size of CBS
using ChatGPT. Based on the results of the experiments
we conducted, a framework consisting of specially created
prompts for CP computation was developed. It has been
validated by applying it to real CBS projects and has achieved
the acceptable model accuracy. The developed framework has
been designed to expedite the size estimation process of a
CBS using an extension of FP called CP, while substantially
reducing the need for human involvement and financial outlay.
Our aim is not only to enhance the efficiency of software
size estimation but also to conserve both time and financial
resources that would otherwise be spent on conventional
approaches. We therefore envision that the proposed approach
will revolutionize the landscape of software project manage-
ment.

II. RELATED WORK

In [24], DeMarco states “you can’t control what you can’t
measure”. This emphasizes how crucial it is to quantify soft-
ware processes, products, and resources in order to effectively
manage software development. Numerous software metrics
have been established over the past few decades to gather
data on these elements of software development. Among these,
one of the most crucial indicators of a software product is its
size. Accurately measuring the size of software in the early
stages of software development has long been a fundamental
aspiration in software engineering [3]. Considerable research
efforts have been devoted to this goal, motivated not only by
the critical significance of accurate size measurement but also
by its crucial function as the main factor in determining effort
when measuring software development effort [6], [7], [25].

A. Function Point

Among the many software size measures proposed, Func-
tion Points(FP) gained wide acceptance in sizing software
products [26], because of its applicability in the early stages
of the SDLC. FP has been extended to several software
development paradigms [27]–[29] and has now become an
ISO standard [30]. However, a common fact among all these
measures is their reliance on a manual counting process. This

necessitates the availability of comprehensive software spec-
ifications, making it imperative to possess expert knowledge
to derive required information [2]. As a result, estimating
software size using conventional measures such as the use of
FP and its extensions has become a time-consuming, resource-
intensive, and therefore costly exercise [12].

B. Component-Based Software Development

The introduction of CBSD has accelerated the shift from
software development to software engineering [28], [31].
This paradigm shift has introduced a novel approach where
pre-compiled and reusable components, often developed by
third parties, are used in the process of software development
[14]. The industry has gained substantial benefits from CBSD
compared to traditional software development. Notably, the
use of reusable components has led to increased efficiency,
significantly reducing both the time and cost of software de-
velopment [13], [14]. However, the adoption of CBSD has not
been without challenges. The unavailability of source codes
and information regarding the class hierarchies of components,
due to their black-box nature, has rendered the conventional
software measures ineffective [32], [33]. Furthermore, CBS
has unique characteristics, such as the interface structure of
components and the usage constraints associated with them,
which further restricts the application of conventional metrics
[15].

C. Component Point

In response, [2] proposed an extension to FP called
Component Points (CP) to measure the size of a CBS using
the specification written in the Unified Modeling Language
(UML) [2]. The CP counting process takes into account
specific characteristics such as the number, type and the
complexity of the components, as well as their interfaces and
interactions, providing a more nuanced and accurate measure
compared to traditional metrics.
The CP counting, process starts with the identification and
classification of components. After identification, the compo-
nents are divided into three categories: Domain Components
(DC), User Components (UC) and Service Components (SC).
The complexity of each component is then calculated. As
mentioned earlier, a component’s complexity is determined
by both the number and the complexity of its interfaces
and interactions. The Interface Complexity (IFC) is computed
based on the interface type - such as Internal Logical Files
(ILF) and External Interface Files (EIF) - and the interface
complexity level - determined by the Number of Operations
(NO), provided and their Number of Parameters (NP) as shown
in Figure 1 and 2 [2].
Interaction Complexity (ITC) is calculated using the Interac-
tion Frequency (IF) and the Complexity Measure (CM) of
data types using equation 1 given below, l denotes by the
number of interfaces that the component has, m represents
the number of operations that the i interface provides and k
is the data type of the information content involved in the
interaction performed by the j operation of the i interface.
The number of interactions (No) carried out by the operation,
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divided by the total number of interactions (Ni) carried out
by all of the interface’s operations, gives the IF. Based on the
number of hierarchical layers and the different data types in the
component data type graph, the complexity of each data type is
computed. The total of all the member data types’ complexity,
calculated recursively from the root to all leaf nodes, defines
a data type’s CM [2].

ITC = Σl
i=1Σ

m
j=1(IFijΣ

n
k=1CMijk) (1)

The average of the components’ IFC and ITC is used to
calculate the Interface Complexity per Interface (IFCI) and
the Interaction Complexity per Interaction (ITCI). Then, the
component complexity level of each component is determined
using Figure 3 given below. The next step involves the cal-
culation of Unadjusted Component Points (UCP), a weighted
sum derived from Figure 4,based on the component type and
complexity level. The UCP is further adjusted using the Value
Adjustment Factors (VAF), resulting in the final CP count [2].
However, like FP and its other extensions, the CP counting
process also requires comprehensive software specifications,
making expert knowledge essential for deriving information.
This has made the use of CP for estimating the size of a
CBS time consuming, resource-intensive and therefore a costly
exercise. Consequently, there is no difference even relatively
modern software development paradigms like CBSD. This
highlights the need for innovative approaches that can stream-
line and automate the software size measurement - not only to
reduce the time and effort required, but also human expertise
while improving the accuracy and efficiency of the process.

Fig. 1: The Table to Determine the Interface Complexity Level

Fig. 2: The Table to Calculate the Interface Complexity(IFC)

Fig. 3: The Table to Determine the Component Complexity
Level

Fig. 4: The Table to Calculate the UCP Value

D. Artificial Intelligence (AI)

The advent of AI has revolutionized various industries by
automating tasks and enhancing productivity [34]. In the
realm of AI tools, there are several notable platforms that
have emerged, offering unique capabilities and functionalities.
One such tool is ChatGPT, a conversational AI chat-bot
developed by OpenAI [20]. ChatGPT has gained popularity
for its ability to generate human-like text responses [20],
[35], automating the task of engaging in natural language
conversations. Another AI tool, Bard AI, also focuses on au-
tomating conversational interactions and has been employed in
various applications [36]. Additionally, AI tools like DALL-
E and Midjourney offer distinct features and functionalities
[12]. These technologies improve productivity, decrease the
need for human interaction, and thereby accelerate various
processes. With their availability, organizations can leverage
AI tools to automate traditional repetitive tasks, opening up
new possibilities for enhanced customer service, information
retrieval, and knowledge management [18]–[23], [37]. The
utilization of AI tools, such as ChatGPT and Bard AI, in
automating human conversational tasks has emerged as an
exciting area of research and development in the AI domain.

E. ChatGPT

In recent times, ChatGPT [20], [38] has attracted significant
interest. Its use in automating a wide range of activities across
various sectors has proven its adaptability. Compared to other
AI tools like Bard AI, ChatGPT is applied in many disci-
plines, including medicine, finance, legal support, innovation,
education, academic research, journalism, civil engineering
[18] and visualizations [19], [20], [37]. Researchers have
conducted evaluations to assess the accuracy of automated
tasks performed by ChatGPT and reported promising results.
Accuracy rates have approached around 100%, with only a
minimal number of errors observed, none of which signif-
icantly impact the overall outcome [19], [20], [37]. These
findings highlight the effectiveness and reliability of ChatGPT
in automating complex tasks.
Another domain that has not escaped the influence of Chat-
GPT is software engineering. A number of research studies
have explored the application of ChatGPT in various aspects
of software engineering [21]. Auto code generation, error
identification, bug fixing [22], improving code quality, re-
factoring, requirements elicitation [39] are among the tasks
that have already been successfully accomplished using Chat-
GPT, exhibiting a high level of accuracy. Moreover, ChatGPT
has demonstrated its capabilities in software modeling and
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designing, achieving an accuracy rate of approximately 100%
[19] outperforming other Generative AI tools like Bard AI.
Given the impressive performance of ChatGPT in these areas,
it naturally raises the question of why the measurement of soft-
ware products, processes and resources cannot also be accom-
plished using ChatGPT. Considering its ability to understand
and generate outputs with high accuracy, ChatGPT appears
to be a promising tool for automating the measurement of
resources, procedures, and products of software development.

III. PROPOSED FRAMEWORK

In this section, an innovative AI based framework is pro-
posed to measure the size of a CBS using ChatGPT. The
objectives of the research are as follows:

• Conduct an experimental task to develop an initial frame-
work consisting of a set of prompts, designed to measure
the size of a CBS using ChatGPT.

• Apply the developed prompts into CBS projects whose
sizes have already been estimated in the literature.

• Conduct a comparative analysis, to validate and contex-
tualize the initial framework.

• Based on the results of the comparative analysis develop
guidelines to improve the prompts to improve the accu-
racy of the framework for measuring the size of any CBS.

• Apply the improved framework to real industrial CBS
projects to validate its applicability in industry.

The developed framework uses an extension of FP called
CP [2] and UML specifications to quantify the size of a
CBS. However, there are several problems associated with
the manual CP counting process. These include the need for
expertise knowledge, significant time, resource involvement,
and consequently high costs. Another challenge is the inability
to obtain size measurements in a timely manner for project
planning and estimation, particularly during the critical early
stages of the SDLC [3]. Given the abundance of studies
examining ChatGPT’s capability, [19], [22], [23], [38], [40]
this research seeks to leverage those findings to automate the
CP counting process and, consequently the size measurement
process of a CBS using ChatGPT - over other generative AI
tools like Bard AI.
An experimental approach was used, inspired by previous
research [19], [22], [37], [41]. The first step involved the gen-
eration of initial prompts, following the guidelines introduced
in similar research [42]. These initial prompts underwent
a fine-tuning process through iterative experimentation. The
observations gained from these experiments helped to fine-
tune the initial prompts for using ChatGPT to complete
CP calculation, which resulted in the creation of an initial
framework consisting of brand-new collection of prompts.
The initial framework was subsequently applied to a set of
projects to ensure the broader applicability of the developed
framework. The were readily available on the internet, and
their CP was calculated using the conventional CP calculation
method as documented in the literature [2], Validation was
further conducted using the Mean Magnitude of Relative Error
(MMRE) and the Percentage of Predictions within 30% of the
actual (PRED(30%)) following the literature [42]–[46]. The

most recent version of ChatGPT, version 3.5, which is free
and open to the public was used through the experiment.
The iterative fine-tuning process of this study unfolded across
three distinct phases, each characterized by significant modifi-
cations to the prompts employed. Within each phase, substan-
tial changes were introduced with the dual purpose of getting a
precise response and enhancing the accuracy of the generated
response. In each phase, the prompts were applied to three
different CBS projects, which were taken from the literature
[47]. The CP of those projects was calculated in [2](Table
I). The comparative analysis helped to check the alignment
of the fine-tuned prompts in each phase with the conventional
CP calculation approach.

A. Selected Projects

1) GPS Navigation System (GPS): The Global Positioning
System (GPS) serves four primary functions: positioning,
mapping, navigation, and system management, making it a
versatile navigation tool. Through integration with the Global
Positioning System Receiver (GPSR), the GPSR Controller
ensures accurate location determination by delivering precise
position coordinates. Utilizing the Geographic Information
Server (GIS) Connection service, the system interacts with
the (GIS) to access maps with relevant coordinates, enabling
comprehensive mapping capabilities. Users can load maps,
view current locations, trace routes, calculate distances, and
obtain real-time system status updates.

2) Taxi Automation System (TAS): The Taxi Automation
System (TAS) was developed to assist human controllers
in efficiently managing a fleet of radio-controlled taxis in
response to customer calls. TAS is tasked with tracking
active drivers and their locations, automatically assigning taxis
to new service requests. Its functionality spans recording
charges for account clients, managing customer requests, and
maintaining driver details. Dispatching and assigning taxis to
jobs is a critical aspect, necessitating effective communication
between controllers and drivers, often facilitated by advanced
communication tools such as in-cab computers.

3) Synchronous Distance Education System (SDES): The
system aims to develop a software application facilitating syn-
chronous media-based learning. Employing H323 and T120-
compliant protocols, SDES offers real-time communication
features such as chat, online browsing, application sharing,
audio, and video within a client-server, three-tier architecture.
Users are categorized as teachers and students, with teachers
granted additional rights for managing online lectures.

TABLE I: Manually calculated UCP of each project.

Project Number The Project UCP
1 GPS 21.5
2 TAS 2.5
3 SDES 105.5

B. Experiments

1) Phase 01: A number of experiments with varying results
were carried out in the first phase. The project scenario
was described, and then the calculation of the size of the
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system was directly requested without generating explanations.
In Project 1, certain values were calculated multiple times
without the UCP or CP being computed. Project 2 showed
a recurrence of responses similar to those generated for
Project 1, including multiple instances of explanations about
the CP calculation process. Although the project was briefly
introduced, but neither the UCP nor the CP was computed.
In Project 3 the responses were the same as in Projects 1
and 2 and had no impact on the CP calculations. Notably,
even though the required information was already accessible,
ChatGPT kept asking for more information on the project data.
The primary goal of computing UCP or CP was never achieved
in any of the situations.

2) Phase 02: A number of experiments were carried out in
the second phase, which was designed to solve the problems
found in Phase 01. Starting a conversation with ChatGPT
and carrying out the CP computation step-by-step was one
of the observations from phase 01. The importance of refer-
ring previous steps was one of the observations of another
experiment. The literature was unable to provide any support
for this.When referring to earlier steps, we tried to include the
keywords ”Refer,” ”Referring,” and ”Above.” Fortunately, the
experiment turned out quite well. The current step began by
making reference to previous steps. We started using variable
names similar to those used in programming, for example,
”Global Positioning System”, in line with earlier literature.
Use, ”sum of” instead of symbols like ”Σ” to improve Chat-
GPT’s understanding of formulas in simple language.
Upon applying these modified prompts to three distinct
projects, Project 1 exhibited positive improvement. It began
referring to previous steps, correctly determined the required
component data type graphs, and interpreted formulas accu-
rately. However, despite these improvements, the UCP re-
mained uncalculated, and the system continued to request
additional details from the client, failing to determine the
necessary data for specific calculations.
By referring to the earlier steps, the response for Project 2
was structurally identical to project 1 in Phase 02. Neither the
UCP nor the CP was computed. The figures for the IFCI and
ITCI were calculated incorrectly even the IFC and ITC were
available in the previous phase. The formulas were correctly
understood, but ChatGPT became confused when a prompt
contained more than one task. The response for project 3 was
comparable to the responses of Project 1 and 2, and so had
no bearing on the CP computation. It began making reference
to the earlier stages, the formulas were correctly understood
but ChatGPT became confused when a prompt contained more
than one task.

3) Phase 03: The third phase of our research, was designed
to address and resolve issues identified in Phase 02 as well
as those encountered during Phase 03 itself. Each step was
dedicated to a single task, ensuring clarity and precision in
execution. Emphasis was placed on providing clear definitions
for unfamiliar terms in the prompts. For example, use the
definition of the term ”Interface” was used to enhance the
accuracy of system interface identification. Additionally, a
vital improvement involved the deletion of ChatGPT’s CP
calculation history to prevent unintended references to prior

processes.
Upon applying these modifications to three distinct projects,
positive outcomes were observed in Project 1. The UCP was
successfully calculated, and the system accurately determined
the required data from previous steps, as shown in Table
II. Similarly, in Project 2, the UCP calculation mirrored the
success of Project 1, with each step dedicated to a single task,
as evidenced in Table II. Project 3 exhibited parallel success,
with Projects 1 and 2, with the UCP was tested in. Since Phase
03 was the only successful phase, each project was tested in
four attempts to verify the calculated UCP value. Phase 03
attempts involved calculations of each project’s UCP. Table
II lists the actual UCP values of each project along with the
UCP calculated by ChatGPT in each attempt.

TABLE II: Calculated UCP for each project by ChatGPT.

UCP

Project A
ct

ua
l

Va
lu

e

1s
t

at
te

m
pt

2n
d

at
te

m
pt

3r
d

at
te

m
pt

4t
h

at
te

m
pt

Project 1 (GPS) 21.5 24.5 20 48 16
Project 2 (TAS) 20.5 30 15 18 23

Project 3 (SDES) 105.5 96 69.5 110 98.5

C. Guidelines for Prompt Development

During our experiment of using ChatGPT to count the CP,
we discovered some insightful findings from the observations
that guide the development of efficient prompts for the more
accurate CP counting. We developed a set of useful guidelines
for CP calculation utilizing ChatGPT based on our findings.
These guidelines formed the basis for the creation of a
complete framework that included a set of prompts designed
to facilitate effective and accurate CP calculation in CBS.
Unlike previous approaches [19], [22], [41], which utilized a
single prompt containing project information, examples, and
restrictions for output generation, our experiments offer a
conversational structure to perform the CP calculation process
step by step. The step-by-step conversation with ChatGPT not
only complies with the performance requirements but also
helps to reduce confusion caused by multiple task requests
being made at once.
Incorporating keywords like ”Refer,” ”Referring,” and
”Above” facilitated cohesive data linkage between steps, and
the deletion of previous conversations in CP counting pre-
vented unintentional model references to prior discussions.
The using of plain English for formulas like “sum of” instead
of “Σ”, use clear definitions for unfamiliar terms (Figure 13),
and employing block letters for CP-specific words (Table III)
were key strategies for enhancing accuracy and understanding.
In the initial step, the project information needs to be entered.
A customized prompt to help with the input of the required
information while getting around the limitations of ChatGPT
[48]. The project’s name appears at the beginning of the
prompt, serving as a distinctive reference point for later ones.
Then,the user is asked to identify the relevant component
data, allowing for a targeted and effective input procedure. For
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better organization and clarity, a structured approach is used
in the description of the system’s operations, placing the word
”Operation” before each operation. In order to improve the
accuracy of the CP computation more, relevant information are
consistently added when an operation depends on particular
variables. It could be made easier to identify different data
types in the system by clearly declaring the data types, which
will provide important insights into the workings of software.
It is important to define the types of components, interfaces,
operations, and parameters before classifying the components
and identifying interfaces, operations, and parameters in the
project. There are separate prompts for each task. Make sure
to perform only one task in each prompt. The number of
parameters and operations determines the complexity level;
Figure 10 specifies threshold values. Before assessing the
complexity level of the interface, refer to the previous steps
where the identified operations are available. The conventional
CP approach uses a table to determine the complexity level
(Figure 1). It is recommended to use the table in Figure 10
facilitate better interpretation of the table (Figure 1) when
using ChatGPT. Define what an interface type is before asking
ChatGPT to determine the interface type of each interface.
In the conventional CP method, the IFC is calculated using
the formula shown in 2; however, ChatGPT can’t interpret the
formula. We have developed a new prompt for calculating the
IFC as outlined in Figure 12. The threshold values should
be presented in the format shown in Figure 12. Specifically,
ask ChatGPT to refer to the complexity level of each interface
identified in the previous step before calculating the IFC. The
conventional IFCI calculation has a formula. Due to the need
for a clearer interpretation, we have developed a new way to
express the formula as mentioned in Figure 13.
Determining how many interactions are carried out by each ac-
tivity is crucial. The number of interactions that each interface
performed determines the IF. As in other prompts, a simplified
version of the IF calculation formula has been developed to
provide a better understanding of the IF calculation (Figure
15). Before calculating the IF, specifically ask to refer to the
previous step, in which the number of interactions performed
by each interface was already identified. The identification of
data types in the system to calculate the CM of each data
type is a crucial task. The data types are identified using the
component data type graph. It is important to specifically ask
to determine the component data type graph first and then
identify the data types in the system.
As we did in other prompts, we developed a simplified version
of the CM calculation formula by removing the symbols.
One important aspect here is that we provide an example of
how to calculate the CM of a given data type (Figure 17).
This approach improves the accuracy and reliability of the
calculated CM of a given data type. The IF of each operation
in each interface and the CM of each data type used in the
interactions carried out by each operation in each interface
are utilized for calculating the ITC. The simplified version of
the ITC formula was used to provide a better understanding.
Especially ask ChatGPT to refer to the IF and CM calculations
in previous steps before moving to the ITC calculation. As
mentioned, the rest of the prompts follow the same prompt

structure. The threshold values are given in a specific format.
Before moving to the required task of the prompt, make sure
to instruct ChatGPT to refer to the relevant data from the
previous steps. Following these recommendations enabled us
the creation of a framework for CP calculation which consists
of a set of prompts to fully utilize ChatGPT for more accurate
size estimations.

TABLE III: CP specific words which needs to be started with
block letters.

Interface
Operation
Parameter

Component
Data Type
Interaction
Complexity

IFC = Σ2
j=1Σ

3
k=1(Ijk ×Wjk) (2)

IV. RESULTS AND DISCUSSION

A. Introduction to the Developed Framework

This section introduces a collection of prompts that perform
step-by-step process for counting CP of GPS Navigation
System using ChatGPT. The CP calculation details of the
GPS Navigation system is already documented [2]. We are
leveraging the standard CP counting process for the GPS
Navigation System from the literature. Referring to this ex-
ample application of proposed guidelines, users can perform
their CP calculation for any CBS. To systematically perform
this complex task, we use the guidelines proposed earlier to
craft step-by-step prompts tailored for one selected CBS (GPS
Navigation System). These prompts follow the guidelines
prepared using the observations gained from our experiments
with ChatGPT.
First, the project scenario is fed to ChatGPT as shown in
Figure 5. Then using the prompt given in Figure 6, the com-
ponents are classified. This is followed by the identification of
interfaces within each component using a prompt as shown in
Figure 7. The prompt in Figure 8 shows how to evaluate the
operations associated with these interfaces. Subsequently, the
parameters for each operation are identified using the prompt
in Figure 9. Each interface’s complexity level is measured
using the instruction in Figure 10, whereas the interface types
are identified using the prompt in Figure 11. IFC for each
interface is then calculated using the prompt in Figure 12
and the IFCI for each component is calculated following the
prompts in Figure 13.
Next the No and Ni for each interaction are calculated by
the prompt of Figure 14. Further, the IF is determined by the
prompt in Figure 15. Data types in the system are identified by
the prompt in Figure 16. The prompt in Figure 17 is used to
compute the CM for each type of data. ITC for each interface
is calculated based on the prompt in Figure 18, and the ITCI
for each component is determined in Figure 19. Consequently,
the complexity level of each component is determined using
the prompt in Figure 20. Finally, the prompt in Figure 21
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is utilized to calculate the UCP of CBS. By considering the
criticism on adjusting the UCP into CP [49], we decided to
stop the CP calculation up to UCP.

Fig. 5: The prompt to input the system scenario to the
ChatGPT

Fig. 6: The prompt for component classification

Fig. 7: The prompt for interface identification

Fig. 8: The prompt to identify the operations

Fig. 9: The prompt for parameter identification

Fig. 10: The prompt to identify the complexity level of each
interface

Fig. 11: The prompt to identify the interface type of each
interface

Fig. 12: The prompt to Calculate the Interface Complexity
(IFC)

Fig. 13: The prompt to Calculate the interface complexity per
interface (IFCI) in each component

Fig. 14: The prompt to calculate number of interactions

Fig. 15: The prompt to calculate Interaction Frequency (IF) of
each interface
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Fig. 16: The prompt to construct component data type graph
for each data type

Fig. 17: The prompt to Calculate the Complexity Measure
(CM) of each data type

Fig. 18: The prompt to calculate the Interaction Complexity
(ITC) of each component

Fig. 19: The prompt to calculate the Complexity per Interac-
tion (ITCI) for each component

Fig. 20: The prompt to determine the complexity level of each
component

Fig. 21: The prompt to calculate the Unadjusted Component
Point (UCP) of the system

B. Discussion
To validate and contextualize the developed framework, we

have conducted a comparative analysis using the results we
got in phase 03 in experiment section with the UCP counts
obtained through the conventional CP counting process on the
same three CBS projects documented in [2]. The findings
from this comparative analysis not only contribute to the ongo-
ing discourse on the applicability of AI based large language
models in software engineering tasks but also offer insights
into the alignment between ChatGPT-generated results and
conventionally accepted methodologies in the domain of CP
counting. We attempted to evaluate the error of the suggested
framework. Considering the discussion of adjustment of UCP
[49], we specifically focused on the UCP counts derived from
the proposed framework in phase 03.
To quantitatively evaluate the performance of our framework,
we employed two distinct validation metrics: MMRE and
PRED (30%). MMRE, is a critical accuracy metric in which
the lower numbers denote better performance. In our valida-
tion, our proposed framework gained a commendable 27%
MMRE (Table IV), showcasing its effectiveness in minimizing
errors and deviating towards an optimal MMRE value of 0.
Furthermore, by achieving a PRED (30%) value of 75% (Table
IV), our framework surpassed the widely accepted model
accuracy of 70%, affirming its capability to provide accurate
predictions within a 30% deviation. This result shows the
validity of our proposed framework, describing it as a reliable
and acceptable model for industry applications.

V. CONCLUSIONS AND RECOMMENDATIONS

In this paper we address a crucial issue in software de-
velopment – the high failure rate of software projects, often
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TABLE IV: Validation results

Project
UCP

A
ct

ua
l

va
lu

e

1st
at

te
m

pt

2nd
at

te
m

pt

3rd
at

te
m

pt

4th
at

te
m

pt

M
M

R
E

%

PR
E

D
(3

0)
%

01(GPS) 21.5 24.5 20 48 16 43.45 75
02(TAS) 20.5 30 15 18 23 24.38 75
03(SDES) 105.5 96 69.5 110 98.5 13.18 75

Overall MMRE and PRED (30%) 27 75

attributed to the lack of quantification of products, processes,
and resources. Recognizing the significance of cost estimation
in software development, we emphasize the critical factor of
software size in cost estimation. Notably, as experts predict
a future for CBS, it becomes imperative to measure CBS
size and then cost of software early in the SDLC. Traditional
methods like CP are time-consuming, resource-intensive, and
reliant on specialized expertise.
In response to these challenges, we developed an innovative
framework which consists of a set of prompts based on the
results of the experiments we did. The Framework is used
to automate the measurement of size of CBS, leveraging
ChatGPT to streamline the process and reduce the dependence
on expert knowledge, time, and resources typically associated
with manual CP counting. ChatGPT has proven the ability
to solve problems accurately in many industries including
software engineering, when compared to other Generative AI
tools like Bard AI. This novel framework seems a significant
step forward in the realm of software engineering.
Based on prior studies in related fields and from our own ex-
periments, we first developed an initial framework comprising
a set of prompts that might be used to measure the size of CBS.
Based on the observations of the experiments we conducted,
the initial framework was fine-tuned to improve accuracy.
Simultaneously, a set of guidelines were developed to enhance
the accuracy of CBS measure. The size of a selected CBSs
was then measured using the framework. The size of those
selected CBS has already been calculated in the previous
study using the manual CP calculation. A comparative analysis
was conducted to evaluate the acceptability and validity of
the developed framework. We have got the model accuracy
beyond the acceptable model accuracy. In certain stages of the
CP calculation procedure, we saw fewer differences compared
with more similarities.
The disparities observed in the initial prompts highlight the
importance of fine-tuning prompts more to enhance the ac-
curacy in ChatGPT’s predictions. Drawing on existing lit-
erature, it is recognized that fine-tuning prompts can be a
strategic approach to improve the accuracy of the outputs.
Still the developed framework has not been validated with
the real-world software project collected from the industry,
even though it is applied to a few CBS projects. As a future
direction, we have planned to conduct a validation process
using the data collected from the industry and the applicability
of the framework into other generative AI tools like Bard AI
is to be experimented with. In addition to that, there is a

future direction to explore various prompt engineering frame-
works, including one-shot, few-shot, and many-shot learning
approaches, to enhance the adaptability and accuracy of the
developed framework in diverse application scenarios. This
research has the potential to significantly change the way of
measuring the size of a CBS in the early stages of the SDLC
to lead to improved estimation techniques.
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