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Abstract—Unmanned aerial vehicles (drones) have provided
new potential in areas like surveillance, transportation, con-
struction, and agriculture. Simulating drone dynamics is vital in
these domains, as it allows researchers to test drones in complex
or risky circumstances. However, evaluating drone behavior is
complicated because to the various elements involved. Traditional
models based on Newtonian and fluid dynamics use parameters
including force, gravity, propeller characteristics, and air density.
While these models can replicate a generic drone, they are not
realistic for replicating the dynamics of a specific drone due to the
complex nature of the parameters. An Al-based technique gives
a simpler way to model drone dynamics compared to these older
methods. This approach leverages advanced AI models trained on
massive datasets from real-world flight events. The datasets cover
a range of flight maneuvers, including figure-eight, circular, and
lazy-eight patterns, illustrating several sorts of drone motions.
Several methods were utilized to develop the models, including
multi-output regression, support vector machines (SVM), neural
networks (NN), and convolutional neural networks (CNN). The
CNN model achieved the highest accuracy at 78%. To validate
the models, anticipated drone shifts were compared with real-
world flight data. Future work will focus on further refining
the CNN-based model and integrating it with a virtual reality
environment for improved simulation.

Index Terms—Artificial Intelligence, Conventional Neural Net-
works, Drone Dynamics, Simulation, Three-Dimensional Space

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs), regularly known as
drones, have become popular over the past two decades
because of their numerous uses in surveillance, disaster
management  [1] ,pollution monitoring, cinematography,
archaeology [2], delivery and military reconnaissance [3l].
The development of drones begins a revolutionary period that
alters the potential of hovering technology [4]. On the other
hand, the UAV market has rapidly grown during the previous
five years. Figure [l| shows forecasted revenue through 2025
as well as the global commercial UAV revenue from 2016 to
2023 [5].

The demand for knowledgeable and experienced human
resources is critical as drone technology develops. For this
technology to be used effectively, the workforce must possess
both theoretical knowledge and practical abilities. Due to this,
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Fig. 1: Commercial UAV revenue worldwide from 2016 to
2025

comprehensive training programs are necessary to cultivate
a proficient workforce [6]. The use of drone simulators is
a key component of this training program. These simulation
programs provide a safe setting for aspiring drone pilots to
improve their abilities and get comfortable with the specifics
of flying drones. It is impossible to overstate the value of
drone simulation, particularly since some drone activities are
very dangerous. Before real-world deployment, professionals
can evaluate and improve their abilities by simulating drone
operations. Through simulation, factors that are unavailable
in real systems can be observed, and model parameter
adjustments can be made easily. This makes it easier to
evaluate multiple options for optimizing system design.
One essential element that sticks out is drone simulation,
which offers drone pilots significant training and hands-on
experience. Simulators can minimize costs and training
duration while reducing the risks and damages resulting from
improper processes [7].

Tools like the DJI (Da-Jiang Innovations) drone simulator,
Zephyr, and FPV Air 2 drone simulators can simulate
real-time drone behavior [8]. These simulators only imitate
drones sold by manufacturers. On the other hand, it is
difficult to simulate drone dynamics using simulation models
based on fluid and Newtonian dynamics. It requires applying
specific knowledge, conducting several trials under ideal
environmental circumstances, analyzing practical challenges,
and assessing the many parameters of the customized drone.

Compared to conventional techniques like fluid and
Newtonian dynamics models, machine learning, a sub field
of artificial intelligence, offers a simplified strategy for
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simulating drones. Machine learning uses fewer parameters
than these traditional methods for accurately imitating drone
behavior. When compared to the difficulties inherent in fluid
and Newtonian dynamics models, machine learning models
are a more effective option for generating realistic and
accurate drone simulations. Therefore, this paper proposed a
method for the simulation of drone dynamics using machine
learning.

The following are the specific objectives of the study:

o To conduct a comprehensive analysis of the current state-
of-the-art techniques used for simulating UAV move-
ments.

o To gather necessary data on real flight scenarios for
building the model.

o To develop an Al-based model that can accurately simu-
late the movements of UAVs.

o To validate the Al-based simulation model by comparing
its predictions with real-world drone flight data.

The remaining parts of this paper are organized in the follow-
ing manner: Section II provides a thorough assessment of the
most advanced drone simulation models currently available.
Section III provides a comprehensive explanation of the orig-
inal study methodology, encompassing the processes of data
gathering, preprocessing, and model building techniques. The
evaluation and outcomes of the created models are reported in
Section IV. Section V addresses the conclusions drawn from
this investigation. Section VI, VII addresses the limitations and
concludes the paper along with propective research directions.

II. RELATED WORK

As a subclass of UAVs, drone contains a variety of
models, including tri copters, hexacopters, quadcopters,
and helicopters. An effective simulator should include the
capability to deal with a diverse range of these drone models
[8]. UAV simulators serve three main functions: evaluating
new technology, providing affordable training, and supporting
research and development activities [4].

In 1910, pilots were trained on the first flying simulator
that didn’t depend on wind. Figure [2]shows that it was made
up of two halves of a barrel that were mounted and moved
by hand by a pilot sitting in the upper half of the barrel. The
pilots had to line up the reference bar of the simulator that
shows the sky [9].

A UAV simulation method using numerical techniques was
introduced by David Orbea et al. They include numerical
approximations in their mathematical model, which includes
several Single Input Single Output (SISO) systems. These
systems have relationships between altitude, pitch, roll,
yaw angles as input parameters and X, y, z axis speeds
as output parameters [10] . Identifying the complicated
relationships between the aircraft’s speed on the X-axis and
the pitch angle, its speed on the Y-axis and the roll angle,
and its speed on the Z-axis and the yaw angle are the main
objectives of this mathematical analysis. Figure [3] shows the
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Fig. 2: First Flight Simulator

aircraft’s angles and orientations. This method adjusts the
pitch angles and motor speeds based on assumptions about
the multi-rotor system, leading to unpredictable behavior
when wind conditions change.

Using the Newton-Euler method, Fernando H.C.T.E et
al. have provided an approach for simulating quadrotor
dynamics  [11]. The model predicts the effects of the
forces and torques generated by the four propellers on the
quadrotor motion. The main objectives are to streamline the
creation of control algorithms for autonomous navigation
and trajectory planning. An experimental flight is conducted
using a quadrotor prototype to evaluate the dynamic model.
The results obtained from these flights are compared with
simulation data to verify their accuracy. Several research
and development projects have utilized machine-related
theories to produce ICT solutions for drones [12]], [13]], [14].
However, most of these applications are for the creation and
advancement of autonomous UAV and the target tracking in
both outdoor and indoor settings.

Javier Maldonado et al. suggested another simulator
to do dynamic simulations, this method first obtains
a comprehensive dynamic model of the UAV using a
quadcopter. Next, using Unity 3D, a virtual three-dimensional
representation of the quadrotor and its operational environment
is created [13]]. In this method, six generalized coordinates
can be used to describe the position and orientation of the
quadrotor at any given time. This coordinator system is used
to generate equations for quadrotor dynamics modeling. The
framework is complicated because it has a lot of model
parameters.

Fig. 3: Pitch, Yaw, and Roll Angles of an Aircraft
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Commercial simulators can be effectively utilized for
drone simulation. Real Flight drone/flight simulator [16] ,
Simpro drone simulator [17]], Liftoff by Immersion RC [18]
and HELIX professional R/C flight simulator [19] are some
of the reviewed commercial drone simulators which can be
employed to imitate certain commercial drone. One of the
most notable situations is the DJI flight simulator, which is
recognized for modeling various types of commercial drones
[20]. This software simulator lets users mimic the actions
of several DJI-branded UAVs and controllers. The weather
and sunshine settings can be customized, and the simulator
offers a variety of 3D scenarios. Using DJI’s advanced flight
control technology, DJI Flight Simulator is a professional
pilot training program that simulates the feeling of really
being in the air. It supports a large selection of DJI drones
and is designed for business users. But this simulator is not
flexible for addressing specific research and development.
The primary problem with DJI Flight Simulators is their
proprietary software, which means that the remote operation
devices and simulated UAVs have limitations and cannot be
expanded [15]. Furthermore, it is a very difficult challenge to
simulate custom-built drone simulator with these generalized
drone dynamics.

Jemin et al. proposed a strategy for regulating a quadrotor
via a neural network provided via reinforcement learning
methods [21]. They proved the efficiency of the training
method in both simulated situations and with an actual
quadrotor. Additionally, the trained policy displayed
outstanding performance while preserving computational
economy. Additionally, it emphasized several advantages of
neural network rules beyond their adaptability. However, this
experiment was restricted to a confined area, spanning around
2 meters in each dimension.

Jackson et al. applied machine learning approaches
to develop a dynamic model for a rotorcraft [22]. They
suggest that standard rotorcraft dynamic models, which
rely on well-established physical laws and are generally
correct, often require simplification for real-time motion
predictions. This simplification might lead to mistakes in
motion predictions compared to real vehicle behavior. In
their research, machine learning approaches were utilized
to train a dynamic model specifically for predicting on-axis
motion responses such as pitch rate, roll rate, and yaw.
The machine learning approach utilized a Gaussian Process
(GP) non-linear autoregressive model [23]. Their findings
illustrate the successful application of machine learning in
forecasting on-axis motions of a rotorcraft, with generally
higher accuracy compared to physics-based dynamic models.

Punjani suggested a method for helicopter dynamic
modeling using a Rectified Linear Unit (ReLU) network
[24]. This approach was chosen due to the helicopter’s
complicated dynamics, including rigid body dynamics,
aerodynamics, engine dynamics, and vibration, as well
as numerous maneuvering patterns. Their study examined
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numerous baseline models and found that the ReLU network
greatly outperformed them. It also improved acceleration
forecasts over current state-of-the-art approaches, with
more performance benefits possible through hyperparameter
adjustment. They tested the model on a range of maneuvers,
including forward and sideways flight, vertical and
inverted vertical sweeps, stop-and-go, flips, loops, spins,
circles,evading, orientation sweeps, and both gentle and
violent freestyle.

Sandaruwan et al. suggested a machine learning-based
approach to model drone dynamics related to the figure of
Eight Maneuvering pattern [25]. Authors have produced
satisfactory findings and proved that the machine-learning
approach can be successfully applied to anticipate drone
motions. However, they have not released the evaluation
of the built drone dynamic model and simulation environment.

Shehan et al. performed a comprehensive review study
on diverse simulation models that employ mathematical and
machine learning methodologies [26]. The authors claim
that most current drone simulators lack generalizability
and frequently depending on many model parameters.
Additionally, researchers highlight an absence of studies that
utilize artificial intelligence (AI) techniques to accurately
replicate the flight dynamics of drones based on three-
dimensional flight data.

III. METHODOLOGY

This chapter covers the methods of data collecting, the
process of building the model, evaluation approaches, and the
outcomes of the derived model. Figure [3]indicates the basic
steps of research methodology.

A. Data Collection

Four-rotor drones are a subclass of multirotor systems,
and these drones employ four rotors to keep them hovering.
A prominent example of these multirotor drones is the
regularly used DJI Mavic mini drone developed by the SZ
DIJI Technology Co. Ltd [27]]. Data collection for the present
research was performed using a DJI Mavic Mini drone, as
shown in figure [] The drone’s position and orientation are
determined by the inputs it gets from the radio controller.
The main goal of this project is to utilize machine learning

e

Fig. 4: DJI Mavic Mini Drone and Remote Controller
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Fig. 5: Research Methodology

methods to create a flexible model for a quadcopter drone.
The objective of this model is to develop a relationship
between the movements and orientation adjustments of the
drone, and the inputs received from the operator’s radio
controller. Six degrees of freedom are available to the drone
for movement, which includes three rotational and three
transnational motions.

The drone’s movements in three dimensions are controlled
by the remote controller utilizing four main configurable
factors outlined below. Adjusting these variables enables
the drone to move in complicated patterns inside three-
dimensional space. A radio controller with these important
adjustable variables is shown in figure [0

o Throttle: Controls the vertical motion. Adjusting the
throttle upwards causes the drone to climb while reducing
it causes the drone to fall.

o Yaw: Controls rotation around the vertical axis. Clock-
wise rotation turns the drone right, counterclockwise turns
it left.

o Pitch: Controls forward and backward tilt. Sliding for-
ward pushes the drone forward, and sliding backward
moves it backwards.

« Roll: Controls side-to-side tilt. The rolling left pushes the
drone left, rolling right moves it right.

The DJI Mavic Mini drone is equipped with a variety of
integrated sensors that are intended to guarantee accurate
flying and consistent performance. The sensors, such as
accelerometers, GPS, and GLONASS, work together to
ensure precise location, navigation, and flight stability.
The Mavic Mini offers a flight log that documents flight
position, orientation data, and radio controller input data.

Throttle l ' Pitch

Yaw Roll

Fig. 6: A Remote Controller with Key Controllable Variables
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The log records 10 data points per second (10Hz), providing
detailed insights into the drone’s flying patterns and pilot
commands. While the Mavic Mini maintains a baseline
location accuracy of roughly 0.5 meters using its built-in GPS
sensors, customers can boost this accuracy up to 1 centimetre
by installing extra sensors. This feature enables enhanced
accuracy in tasks like surveying or mapping.

In pilot training, fundamental maneuvers including
steep power turns, steep spirals about a point, chandelle
turns, lazy eights, and eights-on-pylons are often utilized
to build pilots’ skills and abilities [28]. Most of these
training techniques contain six degrees of freedom motions,
providing for the dynamic interaction between the drone and
the operator [29]. The figure-eight maneuvering pattern,
or its variations is extensively employed across several
areas to imitate real-world circumstances and test essential
maneuverability features [30]. Below main maneuvering
patterns were selected for collecting drone flight data.

o Figure-Eight Pattern: This pattern involves flying the
drone in a figure-eight configuration, which can assist
pilots learn coordinated turns, maintaining altitude, and
controlling speed. Pattern performed on a flat plane
without significant changes in altitude.

e Circular Pattern: Flying the drone in a circular path
around a fixed point.

e Lazy eight Maneuver: The Lazy Eight maneuver is
an advanced aviation technique comprising two subse-
quent 180-degree turns in opposite directions, along with

Fig. 7: Lazy eight pattern
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smooth climbs and descents. The aircraft increase altitude
during the first 90 degrees of each turn, then descends
during the second 90 degrees.The figure [7] shows the
lazy eight pattern.

These maneuvering patterns give a dataset covering a wide
spectrum of drone motions, from basic maneuvers to more
complex flight tactics. These specific patterns are chosen
over random patterns because they inherently include varied
dynamics within their structured movements, providing a
comprehensive overview of the drone’s capabilities and pilot
ability.

Nearly 100 drone flights were done over a period of
nearly three months to obtain the data, totaling 8 hours of
flying time covering 10 kilometers. This distributed strategy
was adopted instead of gathering data in a single session to
ensure a more comprehensive understanding of diverse flight
situations over time. Each experiment completed by a single
drone pilot involves nearly thousands of data points, while
the overall dataset contains over 100,000 data points. These
flight logs are stored either on the mobile phone linked to the
remote controller or on the SD card installed into the drone.
The duration of each flight varied from 2 minutes to 10
minutes. Figure [§]illustrates an actual aerial image acquired
during a data gathering period held on university premises.

Accurately maneuvering the drone in three-dimensional
space without any visible indicators according to these three
pattern shapes is a difficult challenge. To attain accurate
shapes, researchers employ physical markers placed on the
ground to direct the trajectory of the drone. By operating
the drone and utilizing these markings as visual references,
it’s able to maintain its original form. To ensure that the
acquired data of the drone matches with the real flight path, the
researcher examined the size and shape of the recorded pattern
with real markers on the ground. It verified there was no GPS
error in the recorded data. Additionally, the experienced drone
pilots visually observed the drone’s position relative to these
landmarks on the ground.

B. Data Pre-Processing

The data saved on either the mobile phone or SD card is
kept as a text file. The initial stage involved translating the
string values of the text file data into numerical numbers. DJI

Fig. 8: Actual aerial view of a sample drone pilot drill
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provides a flight log viewer on their website, which makes the
transformation of all text files into CSV (Comma Separated
Values) format . Each flight log covers 184 features
and covers nearly 1000 data points, with an approximate
flight length of 10 minutes. Starting from a battery level
between 97% and 100% carrying out all operations with fully
charged batteries that helps to prevent the risk of performance
variations in the drone due to variances in battery power [32].
Several conclusions about the parameters and implications
were drawn from the analysis of the raw data set:

o Positional Parameters: The drone’s position in three di-
mensions is indicated by parameters like latitude, longi-
tude, and altitude. The drone’s geographic location can be
described by the combination of these connected factors.

o Time Stamp Consistency: Every data point was recorded
at consistent intervals, with a fixed amount of time
elapsed between each capture. This guarantees the tem-
poral component of the data’s uniformity and consistency,
enabling precise analysis throughout time.

e Velocity Parameters: In three dimensions, the drone’s
velocity components are represented by VelocityX, Ve-
locityY, and VelocityZ. These values aid in understanding
the drone’s movement and trajectory over time, much like
location parameters do.

o Constant Parameters: Some sets of parameters don’t
change much or don’t change at all during the experi-
ment. For instance, unless there are notable alterations
or problems with the drone’s power source, parameters
like GpsCount, GpsLevel, Battery Power (%), Battery
Voltage, Battery Voltage Deviation, and Battery Cell
Voltages usually stay constant.

o Static Parameters: Some parameters don’t change based
on the drone’s specified settings, or they offer advice and
warnings in place of dynamic data. Examples of such
parameters are App Tip, App Warning, App Message, and
Flight Mode, which provide information or notifications
on how the drone is operating but don’t change much
while in flight.

In considering the these variables, the following crucial pa-
rameters were chosen for selection from the dataset:

o Time (seconds): This option shows how long it has
been since the drone was turned on. It functions as a
foundational measure for monitoring the flight data’s time
component.

o RcAileron: The radio controller signals used to control
the drone’s roll are represented by this parameter. It
offers information on how the drone’s horizontal tilting
is changed by the pilot.

o RcElevator: The drone’s horizontal pitch attitude is con-
trolled by these signals from the radio controller. They
show that the drone’s forward or backward tilt has been
adjusted.

e RcRudder: The drone’s rotation around its vertical axis
is controlled by the yaw, which is determined by these
signals from the radio controller.

o RcThrottle: The engine’s speed is controlled by these sig-
nals from the radio controller, which affect how quickly
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the drone climbs or falls. They provide details regarding
the drone’s total speed of movement.

o Cartesian coordinates: These three parameters (X, y, z)
stand for the Cartesian coordinates that are obtained from
latitude and longitude measurements. They enable analy-
sis in three dimensions by giving a spatial representation
of the drone’s position.

e Orientation: The drone’s head’s degree of bearing is
indicated by this parameter. It means pitch , yaw and raw
angles of drone. It helps to comprehend the orientation
of the drone in relation to its surroundings by providing
information about which way it is facing.

These parameters capture the location and orientation of
the drone when changing the input parameter of the radio
controller. After combining these parameters, it provides a
complete dataset for the creation of a machine-learning drone
dynamic model. Together, these parameters capture important
facets of drone operation, allowing the model to efficiently
learn and simulate the drone’s behavior. In response to
radio controller input, the machine learning-based drone
dynamic model need to predict the position and orientation
of the drone. Hence, the data can be categorized into two
main groups: input parameters and output parameters, as
demonstrated in table [II

Before training the model one important step is data
transformation.These are data transformation steps. The time
in the CSV file is formatted as a string, for example, ”12m
15.1s”. Before proceeding, the time values in string format
need to be transformed to numerical format in total seconds.
To identify the drone position latitude and longitude values are
used in CSV files. For simple calculation of machine learning
model, it is necessary to convert latitude and longitude values
into local Cartesian system. There are numerous global ways
for translating latitude and longitude into Cartesian coordinate
systems  [33]. But the study focuses on a specific local
area rather than a bigger region because local coordinate
systems is used for small-scale mapping projects [34]]. In this
coordinate system, choosing the drone’s home location as the
initial point (0,0) simplifies calculations and permits accurate
distance measurements over smaller regions. This procedure
effectively turns geographic coordinates into a local Cartesian
coordinate system, enabling calculations and measurements
inside a specific area.

Out of the 100,998 data points represented in the dataset,
42,023 were determined to be outliers. Removal of these

TABLE I: Input and Output Features

Input Features | Output Features
OSD flyTime Cartesian coordinates:
RC.aileron OSD.longitude
RC.elevator OSD.latitude
RC.throttle OSD.height
RC.rudder Orientation:

OSD.pitch

OSD.roll

OSD.yaw
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extreme values greatly impeded the performance of the model
and also decreased the size and diversity of the dataset,
therefore potentially weakening the ability to generalize and
resulting in skewed estimations. Xiuzhen Jiao et al. discovered
a technique to handle the high number of outliers contained
in drone flight data [35]. They proposed the application
of the Two-sided median filtering strategy, which greatly
minimizes the amount of outlier data points. This approach is
used to smooth the data by replacing outlier values with the
median value of surrounding items within a specified interval.
The approach is particularly beneficial when working with
time-series data or data where outliers might reflect noise.
After following the application of this approach, the dataset
had just 6088 outlier points.

Duplicate data points can occur when drones hover
or stay still because their sensors keep recording readings
even when there is no movement. This phenomenon happens
because sensors, such as GPS receivers and IMUs(Inertial
Measurement Unit), continuously send data to flight log
including position, orientation, and velocity every 0.1
seconds, regardless of whether the drone is moving. Thus,
during periods of hovering or stationary flight, repeated
sensor readings may produce identical or almost identical
values, resulting in duplicate entries in the dataset. Removing
duplicate entries from drone flight datasets is critical to
ensure the accuracy and reliability of the data. Also, duplicate
entries might develop due to different factors such as sensor
noise, signal interference, or limitations in sensor precision.
By recognizing and deleting these duplicates, researchers can
receive a more precise representation of the drone’s behavior.
This method helps prevent skewed analysis, false insights,
and errors in model training. In this dataset, 6014 duplicate
data points have been eliminated to improve the quality of
the data.

Normalization is a fundamental step in the data
prepossessing phase of machine learning. It is applied
to translate features inside a dataset that may reside on
various ranges of values into a standardized scale. This
standardization is crucial as considerable discrepancies in
feature ranges might adversely affect the learning process.
The min-max scaling strategy entails this project scaling each
feature independently using the minimum and maximum
values provided in the dataset. Normalization of specified
columns of a data frame is a prepossessing step in machine
learning workflows to ensure that features are on the same
size. Before normalization, the values of each feature ranged
from -250 to 1750. After normalization, these values were
scaled down to a range between -15 and 15. Figure [
and figure demonstrate the data points before and after
scaling, respectively.

C. Build the Machine Learning Model

Machine learning with simulating drone dynamics involves
utilizing computational techniques and statistical models to
enable drones to learn and adjust based on data, rather than
depending on explicit programming. Given the dynamic and
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Fig. 10: Range of values after scaling

nonlinear character of both the input and output datasets,
which involve the drone pilot’s radio controller inputs and the
drone’s position and orientation, there are various acceptable
models to explore. These models should be capable of
handling the quick changes in the data and capturing the
complex relationships between the inputs and outputs. Below
are some potential models that can be utilized to simulate
drone movements simultaneously [36].

1) Multi-Output Regression Model: A multi-output
regression model is a potent analytical tool utilized to predict
many continuous target variables simultaneously. This model
allows for the simultaneous prediction of key factors in drone
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flight data processing, including geographical coordinates
(latitude and longitude), altitude, and orientation (pitch,
roll, yaw). The model can comprehensively understand
the drone’s flight dynamics by analyzing these variables
collectively to capture the interactions and dependencies
among them. This method simplifies the model, maintains
uniformity in predictions, and improves resilience to missing
data, making it well-suited for assessing drone flight data
with numerous interrelated variables [37]. A multi-output
regression model is a strong tool for assessing drone flight
data by predicting numerous variables at once, but it may face
difficulties in situations with complex and nonlinear drone
motions. Because linear regression models often struggle to
handle complex relationships, leading to poor performance.
Considering the constraints in precision seen in simulated
situations, this method may not be appropriate. Hence,
different approaches must be investigated to accurately depict
the complex dynamics of drone flights.

2) Support Vector Machines: Support Vector Machines
(SVM), offer versatility in handling both classification and
regression tasks effectively. Particularly in regression, SVM is
more suitable, especially when dealing with high-dimensional
datasets and nonlinear connections between variables.
The kernel trick, an essential aspect of SVMs, allows for
the transformation of input data into higher-dimensional
spaces. This enables the more accurate representation of
nonlinear relationships by creating decision boundaries.
However, despite these advantages, it’s crucial to realize
that SVMs, like multi output regression model, may provide
unsatisfactory results in certain cases. For instance, if the
relationship between inputs and outputs in drone data is
particularly complicated or non-linear, SVMs may struggle
to capture it adequately. In such circumstances, deep learning
algorithms might offer superior performance.

3) Neural Network: Traditional machine learning
algorithms have difficulty in finding complicated connections
within drone input and output data due to the so sophisticated
nature of the data. However, neural network models offer
a possible answer to this challenge. TensorFlow is deep
learning framework developed by Google and released as
open source, has gained prominence in the field since its
inception in 2015 [38]]. The Keras, a high-level neural
network library developed on top of TensorFlow, stands
out for its user-friendly interface and accelerated model
construction process. Keras simplifies the building of artificial
neural networks, offering developers an easy Python-based
API for constructing and training models. With its seamless
connection with TensorFlow, Keras enables developers to
use the potential of deep learning without the complexity
commonly associated with older neural network frameworks.
Together, Keras and TensorFlow provide a formidable toolkit
for addressing the difficulties of drone data analysis. By
utilizing the power of neural networks, researchers may reveal
insights from drone data that may have been challenging
to extract using traditional machine learning methodologies.
Optimizing machine learning models relies heavily on
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hyperparameter adjustment. The research utilizes Randomized
Search  Cross-Validation(RandomizedSearchCV) for this
purpose. This approach efficiently explores hyperparameter
space, leading to a well-optimized model capable of obtaining
improved accuracy and better generalization on unseen data.
Through the examination of each parameter, the performance
measure is evaluated using a specific scoring metric, such
as negative mean squared error. This approach discovers
the configuration that offers the most optimal outcomes
compared with traditional machine learning methods.
However, additional implementation is necessary because of
a low level of accuracy.

4) Convolutional Neural Networks: Convolutional Neural
Network (CNN) is a unique form of neural network that
is particularly excellent for processing organized grid-like
data, such as images and sequential data. CNN and Neural
Networks (NNs) differ fundamentally in their architecture and
application domains. While NNs are made of fully connected
layers where each neuron is linked to every neuron in the
subsequent layer, CNNs integrate convolutional layers that
apply learnable filters to extract features from grid-like data,
such as images or time series [39]. The model acquired
features in a hierarchical manner, starting from basic and
progressing to more intricate, which enhances their ability
to recognize patterns effectively. After using the appropriate
settings, the model displayed improved performance compared
to other models. Additionally, the model was tested across
diverse maneuvering patterns, further verifying its accuracy.

Among these four models, the CNN model provided excel-
lent findings, notably excelling in scenarios requiring intricate
dynamics and large datasets. Next section explains the result
of each model and overview of dataset.

IV. EVALUATION AND RESULTS

In the context of an Al-based strategy to simulate drone
dynamics in three-dimensional space, evaluation methodolo-

B\

Fig. 11: Sample Drone Drills
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gies play a significant role in measuring the correctness and
effectiveness of the simulation model. Quantitative validation
methods are particularly valuable in this context since they
provide objective measures to assess the accuracy of motion
predictions. One often adopted quantitative validation method
is comparing simulated outcomes with real-world scenarios. In
this research, metrics such as mean squared error (MSE), root
mean squared error (RMSE), or mean absolute error (MAE)
is generated to measure the disagreement between simulated
and observed drone movements.

A. Summary of Dataset

The collection comprises over 100,000 data points
indicating diverse moving patterns observed during drone
drills. Each practice was conducted under diverse conditions,
including varying velocities and experienced drone pilots.
Figure [T1] shows the sample maneuvering patterns.

Figure [I2] depicts the link between input and output
attributes. A correlation matrix is a tabular form exhibiting
correlation coefficients between variables in a dataset. Each
cell in the matrix denotes the correlation coefficient between
two variables, indicating the strength and direction of their
linear link. The correlation coefficient varies from -1 to 1:
1 shows a perfect positive linear link, where both variables
increase together; -1 indicates a perfect negative linear
relationship, where one variable increases as the other drops;
and O indicates no linear relationship.

In the dataset, a correlation coefficient of 1.0 between
latitude and longitude denotes a perfect positive linear
relationship. This indicates that while latitude grows,
longitude also increases correspondingly, and vice versa.

International Journal on Advances in ICT for Emerging Regions

1.0

0.8

- 0.6

-0.4

-0.2

-0.0



27

Additionally, there’s a noteworthy relationship between the
elevator control input (RC.elevator) and the pitch angle of the
drone (OSD.pitch), albeit in different directions. Increasing
the elevator control input by pullig back on the control stick to
lift the nose of the drone actually results in a decrease in the
pitch angle, causing the nose to point downward. Conversely,
decreasing the elevator control input by pushing forward on
the control stick to lower the nose leads in an increase in the
pitch angle, causing the nose to point upward. This inverse
relationship helps maintain the drone’s stability during flight,
as changes in the elevator input lead to matching modifications
in pitch angle to counterbalance the aircraft’s orientation [40].

Figure [I3] shows the distribution of each feature. Based
on the distribution, it appears that the dataset comprises a
varied range of data, with certain variables demonstrating
higher fluctuation than others. The concentration of values
around certain ranges for aileron, elevator, throttle, and
rudder suggests that these elements may have set or limited
operational ranges, whereas the regularly distributed height,
pitch, and roll values signal more variability in these aspects
of drone flying.

B. Result of Models

The training of the models utilized an Intel Core i9
CPU running at a clock speed of 3.7 GHz, along with an
RTX 3080 graphics card and 32 GB of DDR4 RAM. The
training duration ranged from 15 minutes to 3 hours. The
dataset is partitioned, with 80% allocated for training and
20% allocated for testing. The study comprised a range of
patterns to comprehensively test the model’s performance.
Furthermore, a specific drone movement pattern was selected
for the aim of testing each model. Figure [I4] depicts the
actual trajectory of the drone’s maneuvering.

1) Multi-Output Regression Model: To assess the perfor-
mance of the model, Mean Squared Error (MSE) is utilized,
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Fig. 14: Actual Trajectory of the drone
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Fig. 15: Predicted path of multi-output regression model

which quantifies the average squared difference between the
model’s predictions and the actual values.

A lower MSE indicates higher performance, suggesting
predictions that closely match actual results. Conversely,
a greater MSE suggests bigger gaps between anticipated
and actual values, indicating poorer model performance. In
this situation, the MSE is 1541.7, suggesting the need for
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Predicted Drone Path on Custom Test Set

x  Predicted Path

Fig. 16: Predicted path of SVM model

further improvement. Moreover, the reported accuracy is
2.5%, which is significantly low. Visual representations in
figures 15 demonstrate the model’s anticipated trajectory
based on testing data. These graphics demonstrate the
difference between the model’s predictions and the real-world
movement of the drone shown in figure ‘]E Overall, the
model’s performance is rated poor, indicating the need for
modification and additional optimization.

2) Support Vector Machine Model: The SVM model
generated similarly bad outputs, replicating the performance
of the multi-output regression model. Reported accuracy on
the test dataset stands at 4.99%, with an MSE of 1540.99.
Figures [I6] display the model’s anticipated trajectory based
on the testing data.

3) Neural Network Model: Hyper parameter adjusting
is a vital step in optimizing neural network models. To do
this, RandomizedSearchCV is applied to explore a range of
hyper parameters and determine the optimum combination for
the model. The results of this search, including the optimal
parameters, are presented in table [[l When compared to
both the multi-output regression and SVM models, this model

TABLE II: Hyperparameters for NN model

Parameter Value
neurons 64
learning_rate | 0.001
layers 2
epochs 100
dropout_rate | 0.3
batch_size 64
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Fig. 18: Predicted Path of Neural Network Model

demonstrated significantly improved accuracy. With an MSE
value of 0.72 and a model accuracy of 17%, it topped its
counterparts. Figure depicts the error variations of all
output variables. It illustrates that yaw has a greater rate of
error variation compared with other output variables. Figure
{I8] illustrates the expected trajectory of the drone maneuver.

4) Conventional Neural Network Model (CNN): Utilizing
RandomizedSearchCV, appropriate hyperparameters were
discovered for the CNN model. These optimal parameters
are detailed in Table [l The variance in error across
output characteristics is displayed in figure [I9] suggesting
successful prediction for all output aspects except yaw, which
demonstrates significant error variation. This mismatch is
related to the distribution of yaw values, as demonstrated in
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figure [I3] which is not normalized compared to other output
features. The projected path of the test data reveals an MSE
value of 0.65, with a model accuracy of 78% approximately.
Significantly, the model displays greater accuracy compared
to alternative models. Figure [20] displays the anticipated
trajectory of the CNN model, which closely fits the actual
journey.

Accuracy metrics in a CNN model assist in understanding
its performance. R-squared (R2) quantifies the proportion
of the target variable’s variability that can be captured
by the model. It is a numerical value between O and 1,
where a higher value indicates a stronger fit. The Mean
Absolute Error (MAE) quantifies the average discrepancy
between projected and actual values, providing a measure
of the typical deviation of predictions from the real values.
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TABLE III: Hyper Parameter for CNN model
Parameter Value
filters 128
kernel_size 5
activation relu
optimizer adam
learning_rate | 0.001
epochs 50
batch_size 32

TABLE IV: Comparison of Models

Model | Time takes for training | Accuracy | MSE
MOR | 20 minutes -1441.79% | 1541.7
SVM 38 minutes -1440.99% | 1540.99
NN 97 minutes 17% 0.72
CNN 123 minutes 78% 0.65

Explained Variance, typically represented as a percentage,
quantifies the proportion of the variance in the target variable
that is explained by the model. Higher percentages indicate
better model performance. These indicators together measure
the accuracy and reliability of forecasts, driving future model
development and decision-making processes. The box plot of
the accuracy metric is displayed in figure [21]

These results demonstrate that the model works better for
longitude, latitude, and height variables compared to pitch,
roll, and yaw, as indicated by lower MSE, higher R-squared,
and larger variance explained values. A comparison of each
model is shown in table [Vl

V. CONCLUSION

The recent development of unmanned aerial vehicles has
significantly altered various industries, such as surveillance,
transportation, construction, and agriculture. However,
evaluating drone behavior provides substantial challenges due
to the complex interplay of elements like speed, altitude,
orientation, and trajectory. Simulating drone dynamics has
become significant as it enables researchers to test drones
in complex circumstances that are unsafe or impractical.

Furthermore, by utilizing simulation, drone pilots can
Accuracy Metrics Comparisan for Each Target Variable
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Fig. 21: Box plot of accuracy metrics
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receive thorough training in effectively managing various
circumstances.

Traditionally, drone dynamics have been investigated with
Newtonian and fluid dynamics concepts, involving various
parameters such as force, gravity, propeller characteristics, and
air density. Replicating certain drones becomes problematic
due to the number of parameters involved. However, the
provided model can efficiently simulate generic drones.

The research proposed a machine learning-powered
drone dynamic model capable of simulating drone behaviors
without the necessity of specialist subject expertise or
elaborate laboratory setups. This strategy utilizes advanced
Al models trained on huge datasets including real-world
flight conditions. These datasets offer a wide range of
movements, such as eight, circular, and lazy-eight patterns,
indicating numerous sorts of drone motions. Multiple
modeling approaches, including multi-output regression,
support vector machine, neural network, and convolutional
neural network (CNN), were applied in building the model.
Among these, the CNN model had the highest accuracy,
achieving 78%. Quantitative validation was accomplished
by comparing predicted patterns with real-world drone
maneuvers. One notable observation from the experiment
is the high-level shape of the real drone trajectory and the
anticipated path produced by the CNN algorithm are the same.

In contrast to non-Al-based methodologies, which
typically require more attention to diverse variables, the
model streamlines the simulation process. This simplification
not only accelerates the modeling technique but also mitigates
the complexity associated with earlier methodologies.
The fundamental adaptability and learning capabilities of
Al models, of CNNs, enable them to detect underlying
patterns and correlations in drone dynamics from raw data.
Additionally, the employment of Al-driven methodologies has
the potential to grow and adapt, enabling seamless interaction
with multiple drone platforms and scenarios. The accessibility
of drone simulation capabilities minimizes the necessity for
specialist knowledge and sophisticated parameter calibration.
This stimulates creativity and accelerates developments in the
field of drone technology.

VI. LIMITATION

One of the most demanding components of this research was
the collecting of data. It required the recording of numerous
drone maneuvers, a task that was handled by expert drone
pilots. Special care had to be taken to ensure that data
collecting happened under calm weather conditions to avoid
mistakes caused by wind disturbances, which could ultimately
hinder the accuracy of the model. Moreover, gathering data
for specialized flying patterns, such as figure eights, circles,
and lazy eights, proved to be extremely problematic. These
moves need perfect forms, making it required for substantial
effort and competence from the drone pilots. Furthermore, the
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huge amount of data required for training the model presented
another issue. Also, to manage such a vast dataset properly,
high-performance computers are required.

VII. FUTURE WORK

As a future step for this study, it would be helpful to
integrate qualitative validation alongside the existing quan-
titative validation approaches. While quantitative validation
focuses on numerical measures to assess model performance,
qualitative validation involves visual inspection and subjective
evaluation of simulated results against real-world observations.
To strengthen qualitative validation, expanding the range of
drone maneuvers and gathering more extensive information
including varied drone dynamics is required. Additionally,
combining the established model with simulation tools such
as MATLAB or Unity gives an interesting option for future
research. Furthermore, qualitative validation can be strength-
ened by comparing simulated trajectories, flying routes, and
maneuvering patterns directly with real-world observations.
This comparative analysis enables the discovery of any dif-
ferences or inconsistencies between the simulation and actual
drone behavior, offering significant insights into the model’s
accuracy and usefulness.
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