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Abstract—Aspect-based Sentiment Analysis (ABSA) is a criti-
cal task in Natural Language Processing (NLP) that focuses on 
extracting sentiments related to specific aspects within a  text, of-
fering deep insights into customer opinions. Traditional sentiment 
analysis methods, while useful for determining overall sentiment, 
often miss the implicit opinions about particular product or ser-
vice features. This paper presents a comprehensive review of the 
evolution of ABSA methodologies, from lexicon-based approaches 
to machine learning and deep learning techniques. We emphasize 
the recent advancements in Transformer-based models, particu-
larly Bidirectional Encoder Representations from Transformers 
(BERT) and its variants, which have set new benchmarks in 
ABSA tasks. We focused on finetuning Llama and Mistral models, 
building hybrid models using the SetFit framework, and develop-
ing our own model by exploiting the strengths of state-of-the-art 
(SOTA) Transformer-based models for aspect term extraction 
(ATE) and aspect sentiment classification ( ASC). O ur hybrid 
model Instruct - DeBERTa uses SOTA InstructABSA for 
aspect extraction and DeBERTa-V3-baseabsa-V1 for aspect 
sentiment classification. W e u tilize d atasets f rom d ifferent do-
mains to evaluate our model’s performance. Our experiments 
indicate that the proposed hybrid model significantly improves 
the accuracy and reliability of sentiment analysis across all 
experimented domains. As per our findings, o ur h ybrid model 
Instruct - DeBERTa is the best-performing model for the 
joint task of ATE and ASC for both SemEval restaurant 2014 
and SemEval laptop 2014 datasets separately. By addressing the 
limitations of existing methodologies, our approach provides a 
robust solution for understanding detailed consumer feedback, 
thus offering valuable insights for businesses aiming to enhance 
customer satisfaction and product development.

Index Terms—Aspect-Based Sentiment Analysis, Aspect Ex-
traction, DeBERTaV3, Hybrid Model, InstructABSA, Natural 
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I. INTRODUCTION

Aspect-Based Sentiment Analysis (ABSA) has become an
essential technique in Natural Language Processing (NLP) for
extracting fine-grained opinions from textual data. It focuses
on identifying sentiment towards specific aspects within a
text, providing a detailed understanding of customer feedback
and reviews. Traditional sentiment analysis techniques, while
effective at determining overall sentiment, often fail to capture
the nuanced opinions that consumers express about particular
features or attributes of a product or service.

Over the years, ABSA methodologies have evolved signif-
icantly. Early approaches primarily relied on lexicon-based
methods, which used predefined dictionaries of sentiment-
laden words to infer polarity. These methods; however, strug-
gled with context and ambiguity. The advent of machine
learning approaches introduced more sophisticated techniques,
including supervised learning models that could be trained on
annotated datasets. Despite their advancements, these models
required substantial manual effort for feature extraction and
were often domain-specific.

The breakthrough in deep learning, particularly with the de-
velopment of recurrent neural networks (RNNs), Long Short-
Term Memory networks (LSTMs), and Convolutional Neural
Networks (CNNs), marked a significant improvement in senti-
ment analysis. These models could automatically learn features
from text, capturing context and sequential dependencies more
effectively than traditional methods. LSTM and CNN-based
models became popular for their ability to handle long-range
dependencies and local features, respectively. However, these
models still had limitations, especially in understanding long-
term dependencies and complex syntactic structures.

The introduction of Transformer architectures, especially
BERT, revolutionized the field by leveraging attention mech-
anisms to capture contextual relationships in both directions
of a sentence. BERT and its variants, such as RoBERTa and
DeBERTa, have set new benchmarks in various NLP tasks,
including ABSA. These models have demonstrated superior
performance in aspect extraction and sentiment classification
tasks due to their ability to understand complex language
patterns and relationships.

In our  study, we  focus  on developing  a hybrid  model that
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leverages the strengths of the latest Transformer-based models
for ABSA. We aim to address the limitations of existing
approaches by combining aspect extraction and sentiment
classification into a unified framework. Our approach utilizes
datasets from the hospitality domain, including SemEval 2014
(Res-14), 2015 (Res-15), and 2016 (Res-16) restaurant re-
views, and extends to the laptop domain with the SemEval
2014 laptop dataset (Lap-14). By evaluating these models on
imbalanced datasets using the F1 metric, we ensure a balanced
and comprehensive assessment of performance.

Through our literature review, we have identified key
methodologies and their respective accuracies, guiding the
design of our hybrid model. We focus on models that ex-
cel in aspect term extraction (ATE) and aspect sentiment
classification (ASC), aiming to develop a model that builds
on the successes of past methodologies while innovating in
areas where existing methods may fall short. Our goal is to
enhance the accuracy and reliability of sentiment analysis in
our application domain, ultimately providing a robust solution
for understanding consumer feedback.

II. LITERATURE REVIEW

Our literature review systematically investigates various
models that have demonstrated efficacy in ATE and ASC.
Table II provides a comprehensive summary of the method-
ologies employed for ASC over the years considering four
benchmark datasets while Table III provides an extension
for the above table considering only SemEval 2014. Also,
Table IV provides a summary for AE considering SemEwval
2014. Notably, this table exclusively considers models that do
not incorporate LLMs. Table V lists models that perform the
joint task, of the ATE and ASC tasks using by a single model.
The model is fed only in with the relevant sentences or the
reviews. Then, the model identifies the aspects by itself and
classifies the polarities to the aspects that have been identified.
Then, the F1 score of the whole process is reported. For a
sentence Si, the ATE, ASC, and the joint task can be visualized
as below.
Si: The price was high, but the restaurant was breathtaking.

TABLE I: Overview of tasks for ABSA with the sample
sentence Si

Task Input Output

Aspect Term Extraction (ATE) Si price, restaurant

Aspect Sentiment Classification (ASC) Si + price, Si + restaurant Negative, Positive

Joint Task (ATE + ASC) Si (price, Negative), (restaurant, Positive)

A. Models for a Single Task (ATE or ASC)

1) LSTM Based Models: Standard RNNs suffer from
significant limitations, primarily the vanishing gradient and
exploding gradient problems. To address these limitations, the
LSTM network was developed by Hochreiter and Schmidhu-
ber [1]. To effectively utilize aspect information, Wang et al.
[2] proposed a model called LSTM with Aspect Embedding
(AE-LSTM). However, to further leverage aspect information,

Wang et al. [2] developed an enhanced model called Attention-
based LSTM with Aspect Embedding (ATAE-LSTM).

Li et al. [3] proposed Target-Specific Transformation
Networks (TNet), a new architecture designed to improve
target sentiment classification by effectively handling multiple
targets and extracting relevant features without introducing
noise. TNet introduces a novel Target-Specific Transfor-
mation (TST) [3] component for generating target-specific
word representations. The models LSTM-FC-CNN-LF and
LSTM-FC-CNN-AS were built by Li et al. [3] incorporating
a fully connected layer and context-preserving mechanisms.
These models performed better with F1 scores of 70.60%
and 70.23% for LSTM-FC-CNN-LF, 70.72% and 70.06% for
LSTM-FC-CNN-AS for Lap-14 and Res-14, respectively.

2) GloVe Based Models: GloVe (Global Vectors for
Word Representation) is an algorithm that generates word
embeddings by aggregating word co-occurrence statistics from
a corpus. It is important because it captures both local
and global statistical information of words, enhancing the
performance of natural language processing tasks. ASGCN
introduced by Zhang et al. [4] proposed a novel aspect-
specific sentiment classification framework while DualGCN
by Li et al. [5] proposed a dual graph convolutional network
model that considers the complementarity of syntax structures
and semantic correlations simultaneously. Zhong et al. [6]
proposed a new model named KGAN which uses a knowl-
edge graph augmented network, which aims to effectively
incorporate external knowledge with explicitly syntactic and
contextual information. While all these models individually
had their own importance, merging them with Glove as an
embedding method, researchers were able to capture both
local and global information to achieve higher F1 scores like
84.46% with Res-14. However, UIKA (Unified Instance and
Knowledge Alignment Pretraining) by Liu et al. [7], which
introduces a unified alignment pretraining framework into the
vanilla pretrain-finetune pipeline, incorporates both instance
and knowledge level alignments. It reported a higher F1 score
of 85.53% with KGAN for Res-14. Furthermore, KGAN+UIKA
achieved higher F1 scores with BERT compared to GloVE.

3) BERT Based Models: The original BERT model was in-
troduced by Devlin et al. [8]. BERT’s training process involves
two main steps: pre-training and fine-tuning. BERT-DK, in-
troduced by Zhao [9], integrates domain-specific knowledge
to improve ABSA performance. By incorporating domain-
specific information, BERT-DK achieved F1 scores of 77.02%
and 83.55% for aspect extraction on the Res-14 and Lap-
14 datasets, respectively. Similarly, BERT-SPC, developed
by Song et al. [10], employs a Sentence Pair Classification
framework to better understand the context of aspect-specific
sentences.

Innovative approaches such as BERT-MRC, proposed by
Zhao et al. [11], frame ABSA tasks as machine reading
comprehension problems, while Xu et al. [12] introduced
BERT-PT, which involves pre-training BERT on domain-
specific data followed by fine-tuning. BAT which stands for
BERT with Adversarial Training, introduced by Karimi et al.
[13], enhances ABSA by generating adversarial examples
during training.
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Cutting-edge models like RGAT-BERT, DualGCN-BERT,
TF-BERT, and dotGCN-BERT have further improved ABSA
performance. RGAT-BERT, proposed by Bai et al. [14],
uses relational graph attention networks to improve aspect
extraction and sentiment classification abilities. In addition,
DualGCN-BERT introduced by Li et al. [5], uses dual graph
convolutional networks to handle both aspect extraction and
sentiment classification. TF-BERT, developed by Zhang et al.
[15], uses task-specific fine-tuning strategies to improve ABSA
performance. In contrast to that DotGCN-BERT, proposed by
Chen et al. [16], uses dot-product based graph convolutional
networks to improve ABSA performance. Furthermore, keep-
ing another step forward, DualGCN and KGAN have used
BERT as the embedding methodology in order to achieve
higher F1 scores. Table II shows that KGAN+UIKA with BERT
reported a F1-score of 92.89%, which is the highest for the
Res-16 dataset. But still, we decided to move forward with
DeBERTa-V3-base-absa-v1 since it provides a higher
F1 score in all datasets compared to others.

4) RoBERTa Based Models: RoBERTa [17] is an ad-
vanced language model that is built upon the foundational
work of BERT. The SARL-RoBERTa model, introduced
by Wang et al. [18] used span-based dependency modeling
to align opinion candidates with aspects, and used an ad-
versarial learning strategy to reduce sentiment bias in aspect
embeddings. Among the compared RoBERTa based models,
SARL-RoBERTa performs the best, achieving a F1-score of
82.44% and 82.97% for Res-14 and Lap-14, respectively.

However, models such as ASGCN-RoBERTa,
RGAT-RoBERTa, PWCN-RoBERTa, and RoBERTa+MLP
benefited by combining RoBERTa with various specialized
architectures, as demonstrated by Dai et al. [19]. A
strong performance is achieved by ASGCN-RoBERTa,
which combines an aspect-specific graph convolutional
network with dependency tree syntactic information. With
a relational graph attention network integrated to collect
relational information between words, RGAT-RoBERTa
performs admirably. RoBERTa+MLP integrates a multi-layer
perceptron with RoBERTa. It highlights the flexibility of
combining RoBERTa’s embeddings with simple classifiers.

Task-oriented syntactic information is well captured by
pure RoBERTa based models, particularly by the fine-tuned
variations (FT-RoBERTa). Research conducted by Dai et al.
[19] demonstrates that FT-RoBERTa achieves a 1.56% im-
provement in the F1-score over standard RoBERTa induced
trees, and performs better than parser-provided trees.

5) DeBERTa Based Models: DeBERTa [20] introduces a
disentangled attention mechanism, which utilizes two separate
vectors for each word to represent its content and position
independently. Also, the model incorporates an enhanced mask
decoder in its pre-training phase based on masked language
modeling (MLM).

Improving from the vanilla DeBERTa model a new model,
named DeBERTaV3 was introduced by He et al. [21]. By
further fine tuning the model to improve its performance, Yang
et al. [22] developed the DeBERTaV3-base-absa-V1
model. This was trained using Lap-14, Res-14, Res-16, and
six more datasets counting up to 30k+ ABSA examples. The

accuracy of this model showed an improvement of 9.35%
and 10.87% for the ASC task of Res-14 and Lap-14 datasets
respectively compared to the original DeBERTaV3 model.

In their independent investigations, Marcacini and Silva
[23] as well as Yang and Li [24] explored the utilization
of DeBERTa based models, introducing ABSA-DeBERTa
and LSA-X-DeBERTa, respectively. Marcacini and Silva
[23] explored disentangled learning as a method to improve
BERT-based representations specifically for ABSA. On the
other hand, Yang and Li [24] introduced a novel perspective
in ASC by emphasizing the significance of aspect sentiment
coherency. Their study revealed that neighbouring aspects
usually share similar sentiments, which is known as “as-
pect sentiment coherency.” To address this, they proposed
a local sentiment aggregation paradigm (LSA) to effectively
model fine-grained sentiment coherency. Consequently, the
LSA-X-DeBERTa model introduced by Yang and Li [24]
achieved a F1-score of 87.02% for Res-14, and 84.41% for
Lap-14 under the sentiment classification task.

6) Other Models: Concerning ASC and ATE, in partic-
ular, LCF-ATEPC-CDM proposed by Yang et al. [25] and
InstructABSA proposed by Scaria et al. [26] standout for
their strong performances. InstructABSA, utilizing a novel
instruction learning paradigm, showed exceptional abilities in
obtaining pertinent aspects from the text, attaining F1 scores
exceeding 92% for aspect extraction on both the Res-14 and
Lap-14 datasets. Concerning ATE, LCF-ATEPC-CDM, which
also employs a local context focus technique, performs fairly
well. In sentiment polarity classification, InstructABSA
also excels with F1 scores of 85.17% on Res-14 and 81.56%
on Lap-14, outperforming many other models. The LSAT
model proposed by Yang and Li [27], with its focus on aspect
sentiment coherency through a local sentiment aggregation
paradigm, shows impressive results, achieving a F1 score of
90.86% on Res-14. The efficacy of the BART-ABSA model
in a comprehensive approach to ABSA has also been demon-
strated by Yan et al. [28], which combines all ABSA subtasks
into a single generative formulation.

B. Joint Task Models

Here we talk about the models that perform the joint task
of the ATE and ASC tasks together by a single model. The
model is fed only with the relevant sentences or the reviews.
Then, the model identifies the aspects by itself and classifies
the polarities to the aspects that have been identified. Then,
the F1 score of the whole process is reported.

Table V presents the leading joint task models identified
through our research. The InstructABSA and Grace mod-
els, previously described as single task models capable of
performing both ATE and ASC tasks separately, also excel in
the joint task. These models report the highest F1 scores for
the joint task, achieving over 75% for both datasets, indicating
their accuracy and robustness across different domains.
RACL-BERT, introduced by Chen and Qian [29], is a

notable ABSA (Aspect-Based Sentiment Analysis) model that
utilizes the BERT-Large model to address three subtasks si-
multaneously: identifying aspects, detecting sentiment words,
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and classifying overall sentiment. Through multitasking and
relation propagation, RACL-BERT enhances sentiment analy-
sis accuracy. Similarly, SPAN, introduced by Hu et al. [30],
employs a novel approach by focusing on key opinion points
rather than tagging each word. Both RACL-BERT and SPAN
achieved reasonable F1 scores, but were outperformed by
InstructABSA and GRACE.

The E2E-TBSA model, proposed by Li et al. [31], addresses
both ATE and ASC tasks in a single step, using a collapsed
approach that combines these tasks into a unified process.
Similarly, BERT-E2E-ABSA, introduced by Li et al. [32],
is based on BERT models and follows the same principles.
These models achieved F1 scores in the 60%-70% range, but
did not outperform the leading models.
DOER, introduced by Luo et al. [33], uses a cross-shared

RNN framework to generate aspect term-polarity pairs simul-
taneously. IMN, introduced by He et al. [34], employs an
interactive architecture with multi-task learning for end-to-end
ABSA tasks, including aspect term and opinion term extraction
as well as aspect-level sentiment classification.

C. Selection Criteria: Dataset

After a thorough review, the following criteria were estab-
lished for dataset selection:

• Relevance to ABSA: The datasets must be specifically
designed for or widely used in aspect-based sentiment
analysis ensuring granularity.

• Diversity of aspects and sentiments: The selected datasets
should cover a wide range of aspects and sentiments
ensuring generalizability.

• Quality of annotations: High-quality, manually annotated
datasets are preferred to ensure the accuracy.

• Availability and accessibility: Publicly available datasets
with accessibility are chosen to facilitate reproducibility.

Based on these criteria, the SemEval datasets from the years
2014, 2015, and 2016 were selected.

III. METHODOLOGY

In this section, we examine different approaches we tested
in order to find the most accurate and robust solution. These
approaches are listed below.

1) Fine-Tuning LLaMA 2-7B with Quantized Low Rank
Adaptation (QLoRA)

2) Fine-Tuning Mistral-7B with Quantized Low Rank
Adaptation (QLoRA)

3) ASGCN+UIKA+Glove for Sentiment Polarity
4) SSGCN+Glove for Sentiment Polarity
5) Span-ASTE+BERT for Aspect Extraction
6) SETFIT for efficient few-shot fine-tuning of Sentence

Transformers
7) Instruct-DeBERTa (Proposed Model)

A. LLaMA 2-7B with QLoRA

This study incorporates an LLM-based analysis, building
on the work done by Jayakody et al. [64] with LLaMA
2 [65], which highlighted significant advancements in natural

language processing. Due to the computational challenges of
traditional fine-tuning methods, the more efficient QLoRA [66]
technique was employed. QLoRA enables large models to be
fine-tuned on consumer hardware through four-bit quantiza-
tion, a method thoroughly detailed in Jayakody et al. [64].

For this analysis, a 4-bit quantization with NF4 configura-
tion was applied using BitsAndBytes1. Supervised Fine-
Tuning (SFT) within the RLHF framework, as discussed by
Dettmers et al. [66], was also utilized to enhance model perfor-
mance. The fine-tuned model was tested with the Transformers
text generation pipeline.

B. Mistral-7B with QLoRA

Jiang et al. [67] introduced Mistral 7B, a 7-billion-
parameter language model designed for superior performance
and efficiency. Mistral 7B surpasses the best open 13B
model (Llama 2) across all evaluated benchmarks and the
best released 34B model (Llama 1) in reasoning, mathemat-
ics, and code generation.
Mistral 7B leverages grouped-query attention (GQA)

and sliding window attention (SWA). GQA significantly ac-
celerates inference speed and reduces memory requirements
during decoding, allowing for higher batch sizes and, conse-
quently, higher throughput—crucial for real-time applications.
Additionally, SWA is designed to handle longer sequences
more effectively at a reduced computational cost, addressing a
common limitation in LLMs. These attention mechanisms col-
lectively enhance the performance and efficiency of Mistral
7B.

The Mistral 7B model was fine-tuned to perform ABSA
on the Lap-14 and Res-14 datasets. We fine-tuned the base
model separately for these two datasets and evaluated them
separately. This involved customizing the model to better
understand and analyze sentiment related to specific aspects
within the review texts. The Mistral 7B model was se-
lected from the Hugging Face hub. The mentioned datasets
were processed using Pandas to ensure it was in a prompt-
compatible format.

To enable efficient training, 4-bit precision loading was
configured using BitsAndBytesConfig. We set float16 as the
data type for the 4-bit base model, nf4 as quantization type,
and nested quantization was disabled to simplify the training
process. The tokenizer was loaded and configured to handle
padding appropriately. The base model was then loaded with
the quantization configuration, ensuring it was prepared for
low-bit precision training.

In our fine-tuned models we set the Attention dimension to
64, the Scaling parameter to 64, and the Dropout probability:
0.1 for efficient Low-Rank Adaptation (LoRA) parameters.
Then, the fine-tuning was conducted using the SFTTrainer
with the defined training arguments. The dataset was loaded,
and the model underwent supervised fine-tuning, adjusting to
the specific requirements of ABSA on the mentioned datasets.
As the final stage the post-training, the model was saved
and reloaded in FP16 precision. The LoRA weights were
merged back into the base model to create a final, streamlined

1https://github.com/TimDettmers/bitsandbytes
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TABLE II: Accuracy (A) and F1 scores of models evaluated on the SemEval 2014 [35] both Restaurand and Laptop
domains,2015 and 2016 Restaurant benchmark considering Sentiment Polarity. Note∗: The F1-scores for the DeBERTa-v3-
base-absa-v1 model were calculated by us separately.

Model
Accuracy and F1 Score (%)

Res-14 Lap-14 Res-15 Res-16
A F1 A F1 A F1 A F1

MCRF-SA [36] 82.86 73.78 77.64 74.23 80.82 61.59 89.51 75.92
IAN [37] 79.26 70.09 72.05 67.38 78.54 52.65 84.74 55.21
ASCNN [38] 81.73 73.10 72.62 66.72 78.47 58.90 87.39 64.56
ASGCN-DG [38] 80.77 72.02 75.55 71.05 79.89 61.89 61.89 67.48
PRET+MULT [39] 79.11 69.73 71.15 67.46 81.30 68.74 85.58 69.76
MemNet [40] 79.61 69.64 70.64 65.17 77.31 58.28 85.44 65.99

ASGCN-DT-GloVe [4] 80.86 72.19 75.55 71.05 79.34 60.78 88.69 66.64
DualGCN-GloVe [5] 84.27 78.08 78.48 74.74 79.11 62.25 87.80 70.34
DualGCN-GloVe+UIKA [7] 85.19 79.05 78.89 75.14 81.16 65.26 88.91 74.25
KGAN-GloVe [6] 84.46 77.47 78.91 75.21 83.09 67.90 89.78 74.58
KGAN-GloVe+UIKA [7] 85.53 78.00 79.31 75.53 83.89 68.52 90.92 75.74

DeBERTaV3 [20, 21] — 83.06 — 79.45 — 73.76 — 73.59
DeBERTa-V3-base-absa-v1∗ [22, 41] — 90.94 — 90.32 — 89.55 — 84.91
LSA-X-DeBERTa [24] 90.98 87.02 86.46 84.41 91.85 81.29 95.61 84.87

SK-GCN-BERT [42] 83.48 75.19 79.00 75.57 83.20 66.78 87.19 72.02
RGAT-BERT [14] 86.68 80.92 80.94 78.20 83.64 66.18 90.16 71.13
RGAT-BERT+UIKA [7] 87.25 81.98 82.03 78.83 86.40 68.11 91.87 75.28
DGEDT-BERT [43] 86.30 80.00 79.80 75.60 84.00 71.00 91.90 79.00
DualGCN-BERT [5] 87.13 81.16 81.80 78.10 84.25 69.54 89.22 72.40
DualGCN-BERT+UIKA [7] 87.90 81.97 82.43 78.71 86.82 69.80 90.81 73.13
KGAN-BERT [6] 87.15 82.05 82.66 78.98 86.21 74.20 92.34 81.31
KGAN-BERT+UIKA [7] 87.92 82.82 83.21 79.57 87.43 75.12 92.89 82.43
DualGCN-BERT [5] 87.13 81.16 81.80 78.10 84.25 69.54 89.22 72.40
dotGCN-BERT [16] 86.16 80.49 81.03 78.10 85.24 72.74 93.18 82.32
TGCN-BERT [5] 86.16 79.95 80.88 77.03 85.26 71.69 92.32 77.29
Sentic GCN-BERT [44] 87.31 81.09 81.01 77.96 85.32 71.28 91.97 79.56

SARL-RoBERTa-large [18] 90.45 85.34 85.74 82.97 91.88 78.88 95.76 84.29
TNet-AS [3] 80.69 71.27 76.54 71.75 78.47 59.47 89.07 70.43
LSTM+SynATT+TarRep [45] 79.33 69.25 70.87 66.53 78.03 58.30 83.27 65.76
Sentic-LSTM [46] 79.43 70. 32 70.88 67.19 79.55 60.56 83.01 68.22

version suitable for deployment. We fine-tuned this model
using a batch size of 4 for both training and evaluation over 2
epochs, enhancing its capability to extract aspects and identify
sentiment polarity.

To test the fine-tuned model, we developed a function to
process user input and generate corresponding aspects and
sentiments. The function takes an input sentence and utilizes a
text generation pipeline where we set the prompt and specific
parameters for sampling.

Using Hugging Face libraries like transformers,
accelerate, peft, trl, and bitsandbytes, we suc-
cessfully fine-tuned and evaluated both the 7B parameter
LLaMA 2 and Mistral models on a consumer GPU.

C. SetFit

Few-shot learning has become essential for handling label-
scarce scenarios where data annotation is costly and time-
consuming. Traditional methods often rely on large-scale pre-
trained language models (PLMs), requiring substantial com-
putational resources and specialized infrastructure. Moreover,
the need for manually crafted prompts introduces variability
and complexity, limiting accessibility.

To address these challenges, Tunstall et al. [68] introduced
SETFIT (Sentence Transformer Fine-tuning), a prompt-free
framework designed for efficient few-shot learning. SETFIT

eliminates the need for manual prompts and achieves high
accuracy with significantly fewer parameters.

As explained in Jayakody et al. [64], SETFIT involves two
main steps: fine-tuning a pre-trained Sentence Transformer
(ST) using a contrastive loss function, and subsequently train-
ing a classification head on the fine-tuned ST. This separation
of fine-tuning and classification allows SETFIT to be both ef-
ficient and scalable, making it suitable for various applications
with limited labeled data.

D. Instruct-DeBERTa (Proposed Model)

In this study, we developed an aspect-based sentiment
analysis pipeline utilizing transformer-based models to au-
tomatically extract aspects and analyze sentiments in textual
data. The pipeline is composed of two primary stages: aspect
extraction and sentiment classification. For these two stages,
we utilized the best models for each task that we found
through our thorough literature review which is summarized
in Table II, Table III and Table IV. When the analysis, it
is clear that InstructABSA [26] performs the best in all
the analyzed datasets irrespective of the domain. For the Res-
14 dataset, it recorded an F1 score of 92.10%, which was
higher than all the other reported models. It still remained the
highest on the Res-15 data set and was only 1.67%, less than
the highest recorded accuracy under the Res-16 dataset. But
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TABLE III: Accuracy (A) and F1 scores of models evaluated
on the SemEval 2014 [35] benchmark considering Sentiment
Polarity. Note∗: The F1-scores for the DeBERTa-v3-base-absa-
v1 model were calculated by us separately.

Model Res-14 Lap-14
A F1 A F1

LCF-ATEPC-CDM [25] 90.18 85.88 83.02 79.84
KaGRMN-DSG [47] 87.68 81.98 82.13 79.42
MGAN [32] 81.49 71.48 76.21 71.42
RAM [48] 80.23 70.80 74.49 71.35
TN [32] 77.91 65.75 70.58 65.34
CNN-ASP [49] 77.82 65.11 72.46 65.31
RGAT-BERT [14] 86.68 80.92 80.94 78.20

DeBERTaV3 [20, 21] — 83.06 — 79.45
ABSA-DeBERTa[23] 89.46 83.42 82.76 79.36
DeBERTa-V3-base-absa-v1∗ [22, 41] — 90.94 — 90.32
BERT [8] 81.54 71.94 75.29 71.91
BERT-DK [9] 77.02 75.45 83.55 73.72
BERT-SPC [10] [42] .84.46 76.98 78.99 75.03
BERT-MRC [11] 74.21 74.97 81.06 74.10
BERT-PT [12] [13] 84.95 76.96 84.26 75.08
BAT [13] 79.35 76.50 85.57 79.24
P-SUM [42] 86.30 79.68 79.55 76.81
H-SUM [42] 86.37 79.67 79.40 76.52
SDGCN-BERT [50] 83.57 76.47 81.35 78.34
BERT-ADA [51] 87.14 80.05 78.60 74.09
TF-BERT [15] 87.09 81.15 81.80 78.46
Dual-MRC [52] 82.04 75.97
DPL-BERT [53] 89.54 84.86 81.96 78.58
SSEGCN-BERT [54] 87.31 81.09 81.01 77.96

GCAE +GLoVe [55] 79.27 67.66 73.56 67.84
TransCap [56] 79.29 70.85 73.87 70.10

ASGCN-RoBERTa [19] 86.87 80.59 83.33 80.32
RGAT-RoBERTa [19] 87.52 81.29 83.33 79.95
PWCN-RoBERTa [19] 87.35 80.85 84.01 81.08
RoBERTa+MLP [19] 87.37 80.96 83.78 80.73

MN [57] 75.30 64.34 68.90 62.89
MN(+AS) [58] 78.75 69.15 70.53 65.24

TNet [3] 80.69 71.27 76.54 71.75
TNet-LF [3] 80.79 70.84 76.01 71.47
TNet-ATT [58] 81.53 72.90 77.62 73.84
TNet-AS [3] 80.69 71.27 76.54 71.75
TNet-ATT(+AS) [58] 81.53 72.90 77.62 73.84

AE-LSTM [2] 76.25 64.32 68.97 62.50
ATAE-LSTM [2] 77.23 64.95 68.65 62.45
TD-LSTM [59] 75.63 64.16 68.18 62.28
BILSTM-ATT-G [60] 80.38 70.78 74.37 69.90
LSTM-ATT-CNN [3] 78.95 68.71 73.37 68.03
LSTM-FC-CNN-LF [3] 80.41 70.23 75.59 70.60
LSTM-FC-CNN-AS [3] 80.23 70.06 75.78 70.72

AEN-BERT [10] 83.12 73.76 79.93 76.31
AEN-GloVe [10] 80.98 72.14 73.51 69.04

TABLE IV: F1 scores of models evaluated on the SemEval
2014 [35] benchmark for Aspect Extraction.

Model Res-14 Lap-14
InstructABSA [26] 92.10 92.30
LCF-ATEPC-CDW [25] 88.65 81.61
LCF-ATEPC-CDM [25] 89.78 85.88
LCF-ATEPC-Fusion [25] 89.02 83.82
GPT2(med) [61] 75.94 82.04
GRACE [62] 85.45 87.93
BART-ABSA [28] 87.07 83.52
BERT-DK [9] 77.02 83.55
BERT-MRC [11] 74.21 81.06
IMN-BERT [11] 84.06 77.55
RACL-BERT [11] 86.38 81.79
SPAN-BERT [11] 86.71 74.97
Span-ASTE [63] 79.36 67.02

TABLE V: F1 scores of different models which perform the
joint task

Model Lap-14 Res-14
InstructABSA [26] 79.34 79.47
GRACE [62] 70.71 77.26
SPAN [30] 68.06 74.92
RACL-BERT [29] 63.40 75.42
BERT-E2E-ABSA [32] 61.12 74.72
DOER [33] 60.35 72.78
IMN [34] 58.37 69.54
E2E-TBSA [31] 57.90 69.80

P-SUM [42] which reported the highest F1 score for the Res-
16 dataset performed significantly less than InstructABSA
in the previous datasets. Hence, InstructABSA still re-
mained the best option for aspect extraction. Moreover, for
the Lap-14 dataset, InstructABSA topped the charts again
showcasing the models’ adaptability and robustness regard-
less of the relevant domain. Hence InstructABSA was
selected as the best performing model for aspect extraction.
When looking at the performances on the sentiment po-
larity task, DeBERTa-V3-baseabsa-V1 [22, 41] is the
best overall performing model across all the datasets. It
showcases an accuracy of 90.94% for the Res-14 dataset
which is the highest overall. It shows the same promising
results in the Res-15 and Res-16 datasets. In addition, to that
DeBERTa-V3-baseabsa-V1 also shows the adaptability
of the model by recording the highest accuracy for the Lap-14
dataset as well which falls into a completely different domain.

Since we identified the best overall performing models for
individual tasks of aspect extraction and sentiment polarity
detection, we tried to exploit the performances of these models
and build up a hybrid model that performs the joint task of
aspect extraction and sentiment polarity detection by itself.
Then, we created a novel hybrid model utilizing these models
to build up a model which as per our research gives the best
performance as a pipelined hybrid model, which in fact makes
this the SOTA model for the pipelined aspect extraction and
sentiment polarity classification task, also known as the joint
task for ABSA.

Figure 1 shows the proposed model of our study. The
model structure used for ATE is InstructABSA, while the
model used for ASC is DeBERTa-V3-baseabsa-V1. The
collective model is named as Instruct-DeBERTa, which
stands for InstructABSA for aspect term extraction and
DeBERTa-V3-baseabsa-V1 for aspect sentiment classifi-
cation. When looking on to Figure 1 it shows how these two
independent models are being pipelined to build up a single
joint task model.

The algorithm for our proposed model can be presented as
below for further clarification.

Sets:

• X: Review represented as a word sequence (X =
{x1, x2, . . . , xn})

• A: Set of extracted aspect terms (A ⊆ X)
• S: Set of sentiment labels for aspect terms (S ⊆

{positive, negative, neutral})
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Fig. 1: Proposed model

Algorithm 1: Aspect-based Sentiment Analysis
(ABSA)

Require: Review X
1: Aspect Term Extraction (ATE):
2: Ac = fATE(X)
3: Target Aspect Filtering:
4: A = ffilter(Ac)
5: Aspect Sentiment Classification (ASC):
6: S = {}
7: for each aspect term a in A do
8: s = fASC(X, a)
9: Add (a, s) to S: S = S ∪ {(a, s)}

10: end for
11: return Final aspect terms A with sentiment labels S:

{(a, s) | a ∈ A, s = fASC(X, a)}

Functions:
• fATE(X): Function for Aspect Term Extraction. Takes

review X and returns candidate terms (Ac). (Ac ⊆ X)
• ffilter(Ac):A filtering function. Takes candidate terms

and returns refined aspects (A). (A ⊆ Ac)
• fASC(X, a): Function for Aspect Sentiment Classifica-

tion. Takes review X and an aspect term a, returns
sentiment label s. (s ∈ {positive, negative, neutral})

IV. RESULTS

Table VI presents the F1 scores for the models being
built and evaluated by ourselves. In addition to that we
have presented Figure 4 and Figure 5 which give a view on

the robustness of each model for the aspect term extraction
task and the sentiment polarity task separately based on the
accuracies. According to Figure 4 and Figure 5, if the model
shows high accuracy for each task and the accuracies for the
two domains do not exhibit drastic deviations, then the relevant
model will be selected.

A. LLaMA 2-7B with QLoRA

The first section of Table VI shows the performance of
Llama-2 with QLoRA. It emphasizes that this model shows
notable performance in both aspect extraction and sentiment
polarity tasks. On Res-14 and Lap-14 datasets, Llama 2
shows a slight edge in aspect extraction compared to sentiment
polarity. These performances were obtained using the L4
GPU emphasizing the model’s efficiency and effectiveness in
computational performance.

B. Mistral 7B with QLoRA

According to the values in Table VI, the model Mistral
7B exhibits superior performance in both aspect extraction and
sentiment polarity tasks compared to the Llama 2 model.
Specifically, Mistral 7B achieves higher F1 scores across
both Res-14 and Lap-14 datasets, indicating its greater capabil-
ity in accurately identifying aspects and determining sentiment
polarity within the text. These results were achieved using an
L4 GPU, similar to the Llama 2 model.

When comparing the two models, Mistral 7B demon-
strates a clear advantage in both tasks. While Llama 2 per-
forms competently, Mistral 7B consistently outperforms it,
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showcasing its enhanced effectiveness and reliability in han-
dling aspect extraction and sentiment polarity analysis. This
comparison highlights Mistral 7B’s performance, making
it a more capable model for these specific natural language
processing tasks.

C. Some models with BERT and GloVe

As a part of the comparative study for the survey,
we conducted experiments using several advanced models
for aspect-based sentiment analysis. We experimented three
main models: SSGCN+Glove, ASGCN+UIKA+Glove[4],
and Span-ASTE+BERT [63] both in local and Colab environ-
ments. The focus was on to evaluating their performance on
the SemEval 2014 dataset. These results are stated in Table VI.
But still we observed that Instruct-DeBERTa outperforms
all.

D. SetFit

In the second section of Table VI, F1-scores for vari-
ous sentence models using the SETFIT framework [68] are
presented. A model listed alone indicates its use for both
aspect extraction and sentiment polarity identification (e.g.,
BGE [69]), while combinations are marked with a ”+”. For
instance, Paraphrase-MiniLM-L6-v2 [70, 71] is used
for both tasks in one row, and with +MpNet [72] indicates
that Paraphrase-MiniLM-L6-v2 was used for the aspect
extraction component and MpNet was used for the sentiment
polarity identification component.

Differences in aspect extraction accuracy, even with
the same model, arise from the end-to-end fine-
tuning process, where the sentiment polarity model
can impact final results—either positively, as with
Paraphrase-MiniLM-L6-v2 and MpNet, or negatively,
as with LaBSE.
LaBSE [73] consistently excels, likely due to its subtle

information capture, performing well in both aspect-based sen-
timent analysis and sentiment polarity classification. Mpnet
and RoBERTa-STSb-v2 [74] also enhance performance in
multiple setups.

To give a better overview of how various models perform,
we include Figure 4 and Figure 5, which visualize the SETFIT
accuracy values for the models that we evaluated.

In Figure 4, we provide a detailed analysis of aspect ex-
traction accuracy across various models. It’s clear that LaBSE
stands out as the top performer on both datasets. Additionally,
ALBERT+DistilRoBERTa and LaBSE+RoBERTa-STSb
also perform well, with accuracies approaching 90%. Sim-
ilarly, in Figure 5, we analyze sentiment polarity iden-
tification accuracy for the same models and datasets.
LaBSE+RoBERTa-STSb achieves the highest accuracy for
Res-14, while LaBSE+MpNet leads in accuracy for Lap-14.

E. Instruct-DeBERTa (Proposed Model)

From all the evaluated models, our model performs the best
with the highest accuracies and F1 scores. It is also robust for
both domains which makes it the best performing model. As

discussed in the methodology, we selected the best performing
models from Table III and Table IV to create our own hybrid
model. When looking at Table VI, Figure 4 and Figure 5 it is
clear that Instruct-DeBERTa outperforms our finetuned
Llama, Mistral, and all the Setfit based models.

Table VII shows how the two best models we selected for
each subtask perform individually on their relevant task. These
F1 scores are for the combined task, which means our model
is capable of performing both the aspect extraction and the
sentiment polarity tasks. For the first task which is extracting
the aspects, our model gives closer accuracies for what has
been reported by Scaria et al. [26] for the InstructABSA
model. Different ways of splitting a dataset can affect the re-
ported accuracies. Also for the sentiment polarity classification
task the original model, DeBERTa-V3-base-absa-v1 by
Yang et al. [22, 41] which is specialized only for detecting po-
larities gives slightly higher accuracies than our hybrid model.
As seen for the Res-14 dataset the sentiment polarity accuracy
for the individual task by DeBERTa-V3-base-absa-v1
is reported as 90.94% while our reported 88.63%. This is
due to the models being pipelined and the extracted aspects
from the first model is being fed to the second model rather
than calculating the accuracies separately for individual tasks.
Hence the slight deduction in the hybrid model is justified.

So, looking on to all the past models in Table II ,Table III,
Table IV and the models that we worked on in Table VI, it
is clear that our model, Instruct-DeBERTa is the best
performing hybrid model designed for the combined task of
aspect extraction and sentiment polarity detection. Moreover,
our hybrid model shows promising results in the laptop domain
as well. Our model gives an F1-score of 91.56% and 89.65%
for aspect extraction and sentiment polarity respectively.

Also Table V, in the literature review lists out the joint
models which are equivalent to the model we built. These
perform the joint task of ABSA. Here in order for the F1
score to be counted the aspect and the respective sentiment in
the original dataset needs to be correct. The F1 scores of these
models along with our model can be visualized in Figure 2
and Figure 3. It is clear that our model clearly out performs
the currently available joint task hybrid models. It gives a pair
extraction F1 score of 80.78% and 80.94% which exceed the
current reported highest accuracy for the rest-14 and lap-14
datasets. From Table V, Figure 2 and Figure 3 it is clear that
our model is the best performing joint task model. Our model
outperforms all other hybrid models in both domains which
again proves that it is not only accurate but also robust to
different domains as well.

V. CONCLUSION

In this paper, we presented a comprehensive review and de-
tailed experimental analysis of ABSA methodologies, focusing
on the latest advancements in Transformer-based models.

Our hybrid model, Instruct-DeBERTa, was designed
to harness the specific advantages of two best perform-
ing models. InstructABSA is known for its accuracy in
identifying and extracting relevant aspects from text, while
DeBERTa-V3-baseabsa-V1 excels in classifying the sen-
timent associated with these aspects. By integrating these
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TABLE VI: F1 scores of models evaluated by this study on the SemEval 2014 [35] benchmark

Model
F1 Score (%)

Res-14 Lap-14
Aspect Extraction Sentiment Polarity Aspect Extraction Sentiment Polarity

Llama-2-7b [65] with QLoRA [66] 71.94 69.29 71.66 66.53
Mistral-7b [67] with QLoRA [66] 81.33 76.46 77.65 72.40
Instruct-DeBERTa (Proposed Model) 91.39 88.63 91.56 89.65
ASGCN+GloVe+UIKA [7] --- 76.93 --- 75.21
SSGCN+Glove [54] --- 76.43 --- 76.17
SPAN-ASTE [63] 67.54 --- 61.12 ---

S
E
T
F
I
T

[6
8]

BGE [69] (Small) 72.24 75.59 64.79 75.59
Sentence-T5 [75] (Base) 56.82 78.74 63.29 74.01
RoBERTa-STSb-v2 [71, 74] (Base) 82.37 77.95 84.26 67.71
Paraphrase-MiniLM-L6-v2 [70, 71] 84.58 71.65 83.14 64.56

+MpNet [72] 84.58 78.74 79.40 70.07
CLIP-ViT-B-32-multilingual-v1 [71, 76] 81.49 59.05 73.03 53.54
facebook-dpr-ctx-encoder-multiset-base [77] 76.54 78.74 75.52 77.45
SPECTER [78] 81.93 71.65 77.52 55.11
GTR [79] (Base) 81.85 74.80 84.70 74.80
SBERT [71] (Base) 83.18 70.86 84.32 61.41
TinyBERT [71, 80] 78.76 73.22 82.83 63.77
ALBERT [71, 81] 80.08 74.80 80.22 66.92

+DistilRoBERTa [82] 81.49 74.81 79.40 68.50
DistilRoBERTa [82] 84.95 75.59 80.97 69.29

+All-MiniLM-L6-v2 [70, 71] 85.46 71.65 81.27 63.77
MpNet [72] 86.28 77.95 88.80 73.22
LaBSE [73] 89.38 73.23 90.30 64.57

+MpNet [72] 88.55 74.80 89.51 75.59
+GTR [79] (Base) 88.55 74.02 87.27 73.22
+RoBERTa-STSb-v2 [71, 74] (Base) 90.30 77.17 89.51 70.08

TABLE VII: F1 scores for the selected models individually and when pipe-lined

.

Model
F1 Score (%)

Res-14 Lap-14 Res-15 Res-16
AE SP AE SP AE SP AE SP

InstructABSA [26] 92.10 --- 92.30 --- 76.64 --- 80.32 ---
DeBERTa-V3-base-absa-v1.1∗ [22, 41] --- 90.94 --- 90.32 --- 89.55 --- 83.71
Instruct-DeBERTa (Proposed Model) 91.39 88.63 91.56 89.65 75.13 81.26 77.79 79.35

Fig. 2: F1 scores of models for the joint task of ASC and ATE
for lap-14

models, we aimed to create a comprehensive tool that could
perform both tasks with high precision and reliability.

Our model achieved the highest accuracy and F1 scores
across multiple datasets, showcasing its ability to effec-
tively handle diverse textual data and consistently de-
liver high-quality results. This performance can be at-

Fig. 3: F1 scores of models for the joint task of ASC and ATE
for res-14

tributed to the synergistic integration of InstructABSA
and DeBERTa-V3-baseabsa-V1, which allows our hybrid
model to maintain a delicate balance between precision in
aspect extraction and accuracy in sentiment classification.

In conclusion, our comprehensive review and experimental
analysis highlight the significant advancements made possible
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Fig. 4: Aspect extraction accuracy of models
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Fig. 5: Sentiment polarity percentage of models

by Transformer-based models in the field of ABSA. The
development of Instruct-DeBERTa represents a notable
contribution, offering a powerful and versatile solution for ac-
curately extracting aspects and classifying sentiment in diverse
textual data. The superior performance of our hybrid model
sets a new benchmark for future research and applications in
ABSA, underscoring the potential of integrating state-of-the-
art models to enhance the effectiveness of sentiment analysis
methodologies.
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