
The International Journal on Advances in ICT for Emerging Regions 2010 03 (01) : 11 - 24



Abstract—In this paper we describe the construction of a

spell checker for Sinhala, the language spoken by the majority

in Sri Lanka. Due to its morphological richness, the language is

difficult to enumerate completely in a lexicon. The approach

described is based on n-gram statistics and is relatively

inexpensive to construct without deep linguistic knowledge.

This approach is particularly useful as there are very few

linguistic resources available for Sinhala at present. The

proposed algorithm has been shown to be able to detect and

correct many of the common spelling errors of the language.

Results show a promising performance achieving an average

accuracy of 82%. This technique can also be applied to

construct spell checkers for other phonetic languages whose

linguistic resources are scarce or non-existent.

Index Terms—spell checking, Sinhala, data driven, n-gram

I. INTRODUCTION

PELL checking deals with detecting misspelled words in

a written text and possibly assisting users in correcting

them with the use of a dictionary or otherwise. Spell

checkers are well-known components of word-processing

applications. In addition, spell checkers are widely used in

other applications such as Optical Character Recognition

(OCR) systems, Automatic Speech Recognition (ASR)

systems, Computer Aided Language Learning (CALL)

Software, Machine Translation (MT) systems and Text-to-

Speech (TTS) systems [1] [2]. The history of automatic

spelling correction goes back to the 1960s [3]. Even after

decades of extensive research and development, the

effectiveness of spell checkers remains a challenge today.

Common spelling mistakes can be classified into two

broad categories: 1) non-word errors, where the word itself

Manuscript received March 30, 2010. Accepted September 12, 2010.

This research was partially supported by the PAN Localization Project,

(http://www.PANL10n.net) a grant from the International Development
Research Center (IDRC), Ottawa, Canada, administered through the Center

for Research in Urdu Language Processing, National University of

Computer and Emerging Sciences, Pakistan.
R. A. Wasala was with Language Technology Research Laboratory,

University of Colombo School of Computing, 35, Reid Avenue, Colombo

07, Sri Lanka. He is now with the Localisation Research Centre,
Department of Computer Science and Information Systems, University of

Limerick, Limerick, Ireland. (e-mail: Asanka.Wasala@ul.ie).

A.R. Weerasinghe and D.E. Jayalatharachchi are with the University of
Colombo School of Computing, 35, Reid Avenue, Colombo 07, Sri Lanka.

(e-mail: arw@ucsc.cmb.ac.lk, dej@ucsc.cmb.ac.lk).

R. Pushpananda and C. Liyanage are with the Language Technology
Research Laboratory, University of Colombo School of Computing, 35,

Reid Avenue, Colombo 07, Sri Lanka (e-mail: rpn@ucsc.cmb.ac.lk,

cml@ucsc.cmb.ac.lk).

is invalid (i.e. not present in a valid lexicon) and 2) real-

word errors, where the word is valid yet inappropriate in the

context [3] [1] [2]. Based on above categorisation, the task

of spelling correction can be classified into two approaches:

isolated-word correction and context-sensitive

error correction. Real-word errors are usually recognized

and corrected using non-context-sensitive spelling error

correction approaches [3]. Context-sensitive spelling error

correction is more complex and requires advanced statistical

and Natural Language Processing (NLP) techniques.

In this paper, we focus on detecting and correcting non-

word errors, especially to address a prominent issue

prevalent in written Sinhala, casually referred to as “na-Na-

la-La” dissension. A data-driven algorithm based on n-gram

statistics is proposed to solve these spelling problems. In

addition, the proposed algorithm is also capable of

addressing common spelling errors due to phonetic

similarity of letters. At present, there is no published work

on Sinhala spell checking. To the best of the our knowledge,

this is the first implementation of a spell checker for Sinhala

using a data-driven approach.

The rest of this paper is organized as follows: Section II

summarizes the related work in this area. Section III gives

an overview of the linguistic features related to Sinhala

spelling and describes the core spell checking algorithm

implemented while Section IV presents an evaluation of the

current system. Section V discusses the main findings of the

research. Finally, the paper concludes with a summary of the

current research and discusses future research directions.

II. RELATED WORK

Spell Checkers for European languages such as English

[3] are well developed. Literature concerning spell checkers

in Indic languages such as Assamese [2] Bangla [4] [1]

Malayalam [5] Marathi [6] and Tamil [7] are less well

developed. However, similar research in several other

languages, including Sinhala, is underway and need special

attention owing to morphological richness.

Several commercial products [18] of Sinhala spell

checkers have been announced in recent years. Work on

open-source spell checkers has also shown an increase

recently. Hunspell (the spell checker of OpenOffice.org,

Mozilla Firefox & Thunderbird, Google Chrome, Mac OS X

and Opera [19]) has support for Sinhala on OpenOffice.org

through extensions [20]. A dictionary-based spell-checker is

available for Mozilla Firefox as an add-on [21].

A Data-Driven Approach to Checking and

Correcting Spelling Errors in Sinhala

Asanka Wasala, Ruvan Weerasinghe, Randil Pushpananda,

Chamila Liyanage and Eranga Jayalatharachchi

S

12 Asanka Wasala, Ruvan Weerasinghe, Randil Pushpananda, Chamila Liyanage and Eranga Jayalatharachchi

The International Journal on Advances in ICT for Emerging Regions 03 December 2010

Furthermore, there is a Sinhala search-engine [22] that uses

a dictionary-based technique to automatically correct

spelling mistakes in query strings. Unfortunately, none of

these spell-checkers have been systematically assessed or

benchmarked.

One of the major issues worth noting in implementing

spell checkers in these languages is resource deficiency.

Morphological analyzers, tagged corpora and

comprehensive lexica are scarce for many languages

including Sinhala. Moreover, due to the rich morphological

features of these languages, developing entirely rule based

systems or integrating with existing open-source spell

checkers such as Aspell are arduous tasks. Therefore, the

research in Spell checker development in languages such as

Sinhala has many unresolved issues.

The problem of spell checking has been addressed using

edit distance based approaches, morphology and rule based

approaches, dictionary-lookup and reversed dictionary

lookup techniques, n-gram analysis, probabilistic methods,

and neural nets [3] [9] [1] [4]. Of these, morphology based

approaches [5] [6] [7] [2] and reverse dictionary lookup

techniques [1] [4] [5] are the most popular ones used in

Indic languages, most of which have to deal with rich

morphology. Probabilistic or data driven approaches are

scarcely reported due to the lack of resources such as

corpora, although n-gram based approaches are shown to be

effective in addressing spelling errors in other languages [9]

[3].

III. METHODOLOGY

A rigorous linguistic analysis and a literature survey were

carried out to investigate the factors leading to most

common non-word spelling errors in Sinhala. Based on this

linguistic analysis and a thorough analysis of a text corpus,

an algorithm is proposed to detect and correct spelling

mistakes typically found in Sinhala writing.

A. Linguistic Analysis

Sinhala is diglossic; its spoken form is different from its

written form. Sinhala orthography consists of 60 graphemes

and an estimated 40 phonemes [10]. The study revealed that

most of the non-word spelling errors occur due to three

factors: 1) the phonetic similarity of Sinhala characters, 2)

irregular correspondence between Sinhala graphemes and

phonemes, and, 3) the lack of knowledge of spelling rules.

In Sinhala, non-word spelling mistakes are largely due to

the fact that several graphemes correspond to a single

phoneme [10]. The most prominent cases are elaborated in

the following sections.

1) The Pronunciation and Orthography of Aspirated

and Unaspirated Consonants

According to Disanayaka [11] the Sinhala writing system

contains 10 graphemes for representing aspirated consonants

(ඛ /kh
/, ඝ /gh

/, ඡ /tʃh
/, ඣ /dʒh

/, ඨ /ʈh
/,ඪ /ɖh

/, ථ /t /, ධ /d h/, ප

/ph
/, බ /bh

/) and 10 graphemes for representing unaspirated

consonants (ක /k/, ග /g/, ච /tʃ/, ජ /dʒ/, ට /ʈ/, ඩ /ɖ/, ත /t /,

ද /d /, ඳ /p/, ඵ /b/).

The aspirated consonants occur in words borrowed from

Sanskrit or Pali languages. However, they are generally not

pronounced differently from their unaspirated counterparts

[11] [10] [12]. This particular gap between the written

language and the spoken language has led to some common

spelling errors in Sinhala.

Among the letters representing aspirated consonants, the

letters „ඣ‟ /dʒh
/, „ඡ‟ /tʃh

/ and „ප‟ /ph
/ are rarely used, while

the rest are frequent. Furthermore, it can be seen that these

aspirated letters can appear at the beginning, middle or end

of a word. Hence, it is difficult to establish linguistic rules

for the proper usage of unaspirated and aspirated letters in

Sinhala writing.

2) Retroflex and Dental Letter Confusion: The ‘na-Na-

la-La’ Dissension

The most common spelling errors in Sinhala are due to

the retroflex and dental letter confusion. In spoken Sinhala,

several graphemes that represent corresponding retroflex

consonants are actually pronounced in an intermediate

alveolar-like position. The graphemes „ණ‟ and „ශ‟ represent

the retroflex nasal /ɳ/ and the retroflex lateral /ɭ/

respectively. But they are pronounced in the same manner as

their respective alveolar counterparts „න‟-/n/ and „ර‟-/l/ [12]

[10]. When pronouncing the above consonants, not much

attention is paid to the distinction of the place of articulation

(i.e. all of them are pronounced as alveolar sounds), but the

distinction of retroflex and dental letters (though

pronounced as alveolar consonants) is stressed in the writing

system. This confusion inevitably leads to spelling errors.

In the literature, these errors are commonly known as “na-

Na-la-La” (/na/-/nə/-/la/-/lə/) Dissention („න-ණ - ර-ශ‟

errors). Linguists believe that clear guidelines or a

mechanism had been present to describe the correct usage of

retroflex-dental letters until the end of 13
th

 century [13].

However, due to various reasons, these guidelines no longer

exist [13].

By analyzing the language, several rules can be defined to

minimize the confusion between retroflex and dental letter

usage. Some rules can be defined by considering the

phonological transformation rules applied for words derived

from other languages. In addition, some more rules can be

derived by analyzing the usage and the context of retroflex

and dental letters (i.e. „න, ණ, ර, ශ‟). See Sections 1 - 4 of

the Appendix A for linguistic rules concerning the use of the

above retroflex and dental letters.

Rules of the former type are extremely complex. A

layman lacks the requisite linguistic knowledge to apply

such rules to decide whether to use retroflex or the dental

letter in spelling a given a word.

For example, see the rule described in Appendix A 1.2:

1. Intervocalic Sanskrit and Pali ණ /ɳ/ does not get

evolved [14].

Sanskrit „඾්ණ‟ /ʂɳ/ > Pali „ණ්ව‟ /ɳh/ > Sinhala ණ

/ɳ/ [14]

Asanka Wasala, Ruvan Weerasinghe, Randil Pushpananda, Chamila Liyanage and Eranga Jayalatharachchi 13

December 2010 The International Journal on Advances in ICT for Emerging Regions 03

Example: උ඾්ණ /uʂɳǝ/ > උණ්ව /uɳhǝ/ > උණු

/uɳu/, උණ /uɳǝ/

All words used in this example are used in modern

Sinhala writing, yet, a layman would not normally know

which words are borrowed „as is‟ from foreign languages

(such as Sanskrit or Pali) and which words are of the

derived kind. Therefore, without this knowledge, one might

fail to apply the above rule and use the dental letter „න‟

instead of retroflex letter „ණ‟ (or vice versa) in certain

words causing spelling errors.

3) The Pronunciation and Orthography of the Retroflex

and Palatal Sibilants

In Sinhala, the grapheme „඾‟ that represents the retroflex

sibilant /ʂ/, is pronounced as the palatal sibilant „ල‟-/ʃ/. As

with the case of graphemes for representing aspirated

sounds, the above two graphemes were also borrowed from

Sanskrit. Here too, though the distinction of the place of

articulation is not prominent in pronunciation, the correct

grapheme has to be used in writing. It is possible to define

some linguistic rules on the correct use of above graphemes

(See Sections 5 and 6 of the Appendix A). It should be

noted, however, that not all cases are covered by such

linguistic rules. Hence, it can be seen that the confusion

between above two graphemes has lead to some spelling

errors.

B. Error Detection and Correction Methodology

The algorithm for spelling error detection and correction

is described below. It is based on n-gram statistics computed

from the UCSC Sinhala Corpus [23]. The computed word

unigram frequencies and the syllable bigram and trigram

frequencies are effectively utilized in addressing the

prominent “na-Na-la-La” dissension as well as other

spelling errors described in Section III-A above.

Fig. 1. Core Modules and the Overall Architecture of the Spell Checker

Our algorithm is based on the assumption that the

majority of users of the language write using correct

spellings. In other words, we assume that the frequency of

valid words (i.e. words with correct spelling) appearing in

the corpus is higher than the frequency of invalid words.

The core modules and the overall architecture of the spell

checker are illustrated in Figure 1.

The main algorithm of the Sinhala spell checker is given

in Figure 2. Each module has been implemented as a

function and the algorithm corresponding to each function is

given after the description of each module.

ProcessedWordList=PreProcess(InputText)

 for each word w in ProcessedWordList

 PermutationList=GeneratePermutations(w)

 BestSuggestion=SelectBestSuggestion

 (PermutationList, w)

 if BestSuggestion is not equal to w

 then

 SubstitutionList[w]=BestSuggestion

 end if

 end for

OutputText=PostProcess(InputText,

SubstitutionList)

Display(OutputText)

Fig. 2. The Main Algorithm of the Spell Checker

1) Pre-Processing Module

The input to the system is Unicode text. In the pre-

processing module, the system first tokenizes the text stream

and builds a list containing unique Sinhala words found in

the text. Each word is then compared with an exception

word list. If a word is found to be in the exception word list,

it will be removed from the unique word list, hence from

further processing. The exception word list contains a list of

homophones and valid spelling variants. A total of 1188

words identified mainly from literature [15] are included in

this exception list. Several examples for homophones

include {කන - /kanǝ/ - eat, කණ - /kanǝ/- ear}, {තන -

/t anǝ/ - breast, තණ - /t anǝ/- grass}, spelling variants

include {උළශර -/ulelǝ/ - ceremony, උළරශ - /ulelǝ/ -

ceremony} and {කු඿රතා - /kusǝlǝt a:/- skills, කුලරතා -

/kusǝlǝt a:/ - skills}. Homophone disambiguation requires

contextual information as well as advanced Natural

Language Processing (NLP) techniques and is beyond the

scope of this paper. The algorithm in its current form is only

capable of processing isolated words. Therefore,

homophones and spelling variants are excluded from further

processing. Each word in the processed unique list is then

passed to the permutation generation module.

Pre-Processing Algorithm

Function PreProcess takes the input text as a

parameter and returns a list of unique Sinhala words found

in the input text but not in the exception word list.

Pre-processing Module

Permutation Generation

Module

Best Suggestion

Selection Module

Post-processing Module

Input Text

Output Text

Processed Word List

Permutations Generated for each Word

Selected Best Suggestions for each Word

14 Asanka Wasala, Ruvan Weerasinghe, Randil Pushpananda, Chamila Liyanage and Eranga Jayalatharachchi

The International Journal on Advances in ICT for Emerging Regions 03 December 2010

PreProcess(InputText)

 TokenizedWordList = Tokenize(InputText)

 for each word w in TokenizedWordList

 if w is Sinhala and

 w is not in UniqueWordList and

 w is not in ExceptionWordList then

 append w to UniqueWordList

 end if

 end for

 return UniqueWordList

Fig. 3. Pre-Processing Algorithm

2) Permutation Generation Module

As identified in the Section III-A, phonetic similarity of

letters can cause spelling mistakes in a word. Similar

sounding groups of letters found in this exercise include

{ක,ඛ}=/k/, {ග,ඝ}=/g/, {ච,ඡ}=/tʃ/, {ජ,ඣ}=/dʒ/, {ට,ඨ}=/ʈ/,

{ඩ,ඪ}=/ɖ/, {ත,ථ}=/t /, {ද,ධ}=/d /, {ඳ,ප}=/p/, {ඵ,බ}=/b/,

{න,ණ}=/n/, {ර,ශ}=/l/, {඿,ල,඾}=/s/ or /ʃ/ and {ඥ,ඤ}=/ɲ/.

The permutation-generation module accepts a Sinhala

word processed by the pre-processing module and generates

permutations by searching the word for above similar

sounding letters and substituting them with their

corresponding letters that belong to the same group. Among

the generated words, there can be words with correct

spellings, the given (source) word itself and words with

incorrect spellings. For example, given the word „සුඳතර‟ -

/supat alǝ/ - popular, the module will generate and return a

list containing 24 tokens including සුඳතර, සුඳතශ, සුඳථර,

සුඳථශ, සුපතර, සුපතශ, සුපථර, සුපථශ, ශුඳතර, ශුඳතශ,

ශුඳථර, ශුඳථශ, ශුපතර, ශුපතශ, ශුපථර, ශුපථශ, ෂුඳතර,

ෂුඳතශ, ෂුඳථර, ෂුඳථශ, ෂුපතර, ෂුපතශ, ෂුපථර and ෂුපථශ.

Permutation Generation Algorithm

The function GeneratePermutations accepts a

Sinhala word processed by the PreProcess function and

returns a list containing all generated permutations. The

permutations are generated by searching the word for

similar sounding letters and substituting them with

corresponding letters that belong to the same group.

GeneratePermutations(w)

 SimilarLetterGroups={{ක,ඛ},{ග,ඝ},{ච,ඡ},

 {ජ,ඣ}, {ට,ඨ}, {ඩ,ඪ}, {ත,ථ}, {ද,ධ},

 {ඳ,ප},{ඵ,බ},{න,ණ},{ර,ශ}, {඿,ල,඾},{ඥ,ඤ}}

 PermutationList=[]

 for each letter l in w

 if l found in SimilarLetterGroup g

 for each SimilarLetter in g

 w = replace l with SimilarLetter in w

 if w not in PermutationList

 append w to PermutationList

 results = GeneratePermutations(w)

 append results to PermutationList

 end if

 end for

 end if

 return PermutationList

Fig. 4. Permutation Generation Algorithm

3) Best Suggestion Selection Module

This is the core module of the algorithm. This module

involves the detection and correction of spelling errors. The

n-gram statistics computed from the UCSC Sinhala Corpus

is used in this module. A distinct word list along with word

frequencies (word unigram frequencies), syllable trigram

frequencies and syllable bigram frequencies have been pre-

complied and stored in a database for fast retrieval and

efficient processing (See Section V for details of the bigram

and trigram counting algorithm).

In the first step, word unigram frequencies obtained from

the corpus are used to rank the words generated from the

permutation generation module and to choose the best

suggestion among the generated words. The word unigram

frequency corresponding to each generated word is obtained

from the database. The word with the highest frequency is

chosen as the best suggestion. If none of the generated

words are found in the corpus, i.e. the word unigram

frequencies returned zero for all the generated words,

syllable trigram and bigram frequencies are used to select

the best suggestion in the successive steps. If the generated

word consists of more than three syllables, it will be divided

into overlapping sequences of three syllables. Then, for each

three syllable sequence, the corresponding pre-computed

trigram frequencies are obtained from the database and

summed up to get an overall score for the generated word. If

the summed up trigram frequencies yield zero for a certain

word, the word will be divided into repetitive chunks of two

syllables and pre-computed syllable bigram frequencies will

be summed up to get an overall score for the word.

Similarly, if the generated word consists of two syllables,

the syllable bigram frequency is used. Generated words are

sorted according to the overall score obtained. The word

with the highest score is chosen as the best suggestion.

Output of this module is the best suggestion for a given

word. The functionality of the above module is explained

below using examples.

Example #1: Suggestion of the best word using word

unigram frequencies.

Input word: කුලුන - /kulunǝ/ (column)

PermutationList = කුලුන, කුලුණ, කුළුන,

කුළුණ, ඛුලුන, ඛුලුණ, ඛුළුන, ඛුළුණ

Step 1: Obtaining the corresponding word unigram

frequencies from the corpus.

කුලුන 2 කුලුණ 1 කුළුන 0 කුළුණ 43

ඛුලුන 0 ඛුලුණ 0 ඛුළුන 0 ඛුළුණ 0

Step 2: Selecting the best suggestion (word with the

highest frequency)

Best suggestion: කුළුණ

Example #2: Suggestion of the best word using syllable

trigram frequencies.

Input word = පැඛිළශණ඼ා - (a word with incorrect

spellings meaning falter – the word with the correct

spelling is not included in the word unigram list.)

Asanka Wasala, Ruvan Weerasinghe, Randil Pushpananda, Chamila Liyanage and Eranga Jayalatharachchi 15

December 2010 The International Journal on Advances in ICT for Emerging Regions 03

PermutationList = ඳැකිළරන඼ා, ඳැකිළරණ඼ා,

ඳැකිළශන඼ා, ඳැකිළශණ඼ා, ඳැඛිළරන඼ා, ඳැඛිළරණ඼ා,

ඳැඛිළශන඼ා, ඳැඛිළශණ඼ා, පැකිළරන඼ා, පැකිළරණ඼ා,

පැකිළශන඼ා, පැකිළශණ඼ා, පැඛිළරන඼ා, පැඛිළරණ඼ා,

පැඛිළශන඼ා, පැඛිළශණ඼ා

Overall word score computation method for the word

„පැකිළරන඼ා‟ is given in the following:

Step 1: Decomposition of the word into repetitive three

syllable sequences.

පැකිළරන඼ා = පැකිළර + කිළරන + ළරන඼ා

Step 2: Obtaining the syllable trigram frequencies for

above syllable sequences from the database.

පැකිළර 0 කිළරන 27 ළරන඼ා 43

Step 3: Adding above frequencies to obtain the overall

score for the word

පැකිළරන඼ා = 0+27+43 = 70

Similarly, the word „ඳැකිළරන඼ා‟ yields a score of 95

when computed using syllable trigram frequencies. Overall

scores will be computed for the other generated words in the

same manner.

Words are then sorted according to the computed scores

and the word with the highest score is returned as the best

word.

The best word suggested for the above input word for

instance is: ඳැකිළරන඼ා.

If summed up syllable trigram frequencies yield zero for

all generated words, the word will be passed to the bigram

computation component. The best word selection using the

bigram computation component operates in a similar manner

to the trigram computation method explained above.

Example #3: Suggestion of the best word using syllable

bigram frequencies.

Input word = ඛළදෝපැනිඹා - (a word with incorrect

spellings meaning firefly – the word with the correct

spelling is not included in the word unigram list.)

Permutation list = කළදෝඳැනිඹා, කළදෝඳැණිඹා,

කළදෝපැනිඹා, කළදෝපැණිඹා, කළධෝඳැනිඹා, කළධෝඳැණිඹා,

කළධෝපැනිඹා, කළධෝපැණිඹා, ඛළදෝඳැනිඹා, ඛළදෝඳැණිඹා,

ඛළදෝපැනිඹා, ඛළදෝපැණිඹා, ඛළධෝඳැනිඹා, ඛළධෝඳැණිඹා,

ඛළධෝපැනිඹා, ඛළධෝපැණිඹා

Overall word score computation method for the word

„ඛළදෝපැනිඹා‟ is given in the following:

Step 1: Decomposition of the word into repetitive two

syllable sequences.

ඛළදෝපැනිඹා = ඛළදෝ + ළදෝපැ + පැනි + නිඹා

Step 2: Obtaining the syllable bigram frequencies for

above letter sequences from the database

ඛළදෝ 2 ළදෝපැ 0 පැනි 0 නිඹා 2630

Step 3: Adding above frequencies to obtain the overall

score for the word

ඛළදෝපැනිඹා = 2+0+0+2630=2632

Similarly, the word „කළදෝඳැනිඹා‟ yields the highest score

of 2875 when computed using syllable bigram

frequencies. Hence it is selected as the best suggestion.

As the output of this module, a list

(SubstitutionList) containing the original words and

their corresponding best words is returned (e.g.

SubstitutionList[„කුලුන‟] = „කුළුණ‟,

SubstitutionList[„පැකිළරන඼ා‟] = „ඳැකිළරන඼ා‟

etc).

Best Suggestion Selection Algorithm

The function SelectBestSuggestion accepts a

generated permutation list and selects the best suggestion

from the list based on word unigram, syllable bigram or

syllable trigram frequencies.

SelectBestSuggestion(PermutationList,

OriginalWord)

uni-gram comparison

HighestUnigramFrequency = 0

BestWord = OriginalWord

for each word w in PermutationList

 WordUnigramFrequency =

 GetUnigramCountFromDB(w)

 if WordUnigramFrequency >

 HighestUnigramFrequency then

 HighestUnigramFrequency =

 WordUnigramFrequency

 BestWord = w

 end if

end for

tri-gram comparison

if BestWord is equal to OriginalWord

 then

 HighestTrigramScore=0

 BestWord=OriginalWord

 for each word w in PermutationList

 ThreeSyllableChunks=[]

 if length of w > 3 then

 ThreeSyllableChunks =

 DecomposeWordIntoTrigrams(w)

 WordTrigramScore=0

 for each ThreeSyllableChunk in

 ThreeSyllableChunks

 WordTrigramScore =

 WordTrigramScore +

 GetTrigramCountFromDB

 (ThreeSyllableChunk)

 end for

 if WordTrigramScore >

 HighestTrigramScore then

 HighestTrigramScore =

 WordTrigramScore

 BestWord=w

 end if

 end if

 end for

end if

16 Asanka Wasala, Ruvan Weerasinghe, Randil Pushpananda, Chamila Liyanage and Eranga Jayalatharachchi

The International Journal on Advances in ICT for Emerging Regions 03 December 2010

bi-gram comparison

if BestWord = OriginalWord

 then

 HighestBigramScore = 0

 BestWord = OriginalWord

 for each word w in PermutationList

 TwoSyllableChunks = []

 if length of w > 2 then

 TwoSyllableChunks =

 DecomposeWordIntoBigrams(w)

 WordBigramScore = 0

 for each TwoSyllableChunk in

 TwosyllableChunks

 WordBigramScore =

 WordBigramScore

 + GetBigramCountFromDB

 (TwoSyllableChunk)

 end for

 if WordBigramScore >

 HighestBigramScore then

 HighestBigramScore =

 WordBigramScore

 BestWord = w

 end if

 end if

 end for

end if

return BestWord

Fig. 5. Best Suggestion Selection Algorithm

4) Post Processing Module

In this module, the input text will be scanned from the

beginning and the words that are in the substitution list are

replaced with the best suggestions. This methodology

preserves the original formatting information of the text,

including non-Sinhala words, numerals, punctuations and

space among others.

Post Processing Algorithm

The function PostProcess accepts the original input

text and the substitution list as the parameters. It will scan

the input text for the words that are in the substitution list

and replace them with corresponding best suggestions.

Then, it will return the output text, which will be rendered

by the display function.

PostProcess(InputText, SubstitutionList)

 OutputText = InputText

 for each word w in OutputText

 if w is in SubstitutionList then

 replace w in OutputText with

 SubstitutionList[w]

 end if

 end for

 return OutputText

Fig. 6. Post Processing Algorithm

IV. EVALUATION AND RESULTS

There is neither a standard lexicon for Sinhala spell

checker evaluation, nor previous work reported for

comparing with. Therefore, in order to evaluate our system,

we used 5505 words obtained from a well known printed

dictionary of inherently difficult and commonly misspelled

words [15] as the baseline.

The first test was straight forward. Each entry was passed

to the system and the output of the system was compared

with the original entry. The second and third tests were

much more stringent. The second test involved

programmatically altering the original entries of the test data

set so that all the dental letters were replaced by their

corresponding retroflex letters. Furthermore, the unaspirated

letters were replaced by their aspirated counterparts. These

words were then used as the input to our spell checker, and

the output was compared with the original unaltered entries.

Similarly, in the third test, the aspirated letters in the

original entries were altered to the corresponding

unaspirated counterparts and dental letters were replaced by

the corresponding retroflex letters. These words were then

analyzed by our speller. The output was compared with the

original unaltered entries. A fourth test was carried out by

obtaining 20 randomly chosen blog articles published online

[24]. The articles were analyzed for spelling errors by our

system. For each of the above tests, the errors detected by

our system were manually analyzed by an expert. The

analysis revealed that our system has wrongly identified a

small number of words as invalid (false negatives).

Moreover, a few words which were identified as valid by

our system were actually invalid (false positives). The test

results are summarized in Table I.

 The results show an overall accuracy of over 82% for the

proposed algorithm. Manual analysis of the words that were

wrongly suggested by our system as correct revealed that

these words are not found in the corpus. Therefore, such

words were suggested by the trigram or bigram calculation

methods described in Section III-B-3. Prominent

observations made by further analyzing such words are

given below:

1. අනු- is a commonly used prefix in Sinhala. It has a

higher syllable bigram and syllable trigram frequency.

Therefore it can be erroneously substituted for අණු- to

suggest a word with incorrect spelling.

e.g. අණුජීවිඹා  අනුජීවිඹා

2. The bigram frequency of the letter sequence -යන-

shows that it is one of the most frequently used phonemic

combination. Therefore, it can be erroneously substituted for

-යණ- producing a word with incorrect spelling.

e.g. කාර්මීකයණඹ  කාර්මීකයනඹ

TABLE I
EVALUATION RESULTS OF SUBASA SPELL CHECKER

Test
No.

Total

Number of

Words

of correct
suggestions

of

incorrect

suggestions

Accuracy (%)

1 5505 4728 777 85.89

2 5505 4616 889 83.85

3 5505 4588 917 83.34

4 3304 2501 803 75.70

Asanka Wasala, Ruvan Weerasinghe, Randil Pushpananda, Chamila Liyanage and Eranga Jayalatharachchi 17

December 2010 The International Journal on Advances in ICT for Emerging Regions 03

3. The trigram frequency of the suffix -ර්ලන shows that it

is one of the most frequently used phonemic combination in

the language. Therefore, it can be erroneously substituted

for -ර්඾ණ.

e.g. ප්රeකර්඾ණඹ  ප්රeකර්඾නඹ

4. Similarly, the trigram frequency of the suffix -ං ලඹ is

one of the most frequently used phonemic combinations in

the language. Therefore, it can be erroneously substituted

for -ං ඿ඹ.

e.g. කඨිනානි඿ ඿ඹ කටිනානි඿ ලඹ

To compare the effectiveness of our algorithm against

currently available algorithms used by popular applications,

we then performed the same tests on Microsoft Office

Sinhala Spell Checker and Sinhala Ubiquitous Spell

Checker version 3.0.1-beta-1 for OpenOffice.org. In all of

these tests, we used the first correction the particular spell

checker suggested if it identified an incorrect word. We

made the assumption that these spellcheckers suggested

corrections based on priorities and relevance and the first

suggestion was the most appropriate correction for the

relevant error.

Table II summarizes the test results for the Microsoft

Spell Checker. It shows an overall accuracy of 50.35%. For

naturally occurring text (blog corpus) it reports an accuracy

just above 64%, which is not very useful in practice. Table 3

summarizes the test results for the Sinhala Ubiquitous Spell

Checker version 3.0.1-beta-1 for OpenOffice.org. These

results show an average accuracy of 31.41%, a lower value

compared to the Microsoft Office Spell checker. However, it

shows a better performance of over 73% for the blog text

where spelling mistakes are not deliberate.

From these tests it is evident that our algorithm performs

better in naturally occurring text, and much better in

extremely bad cases of misspelling such as those simulated

for tests 1, 2 and 3.

V. DISCUSSION

The n-gram statistics used in this spell checker were pre-

compiled and stored in a database. The current database

contains 440022 unique words with their frequency of

occurrence in the corpus (word unigrams), 166460 distinct

three syllable sequences (syllable trigrams) with their

frequency of occurrence and 46878 two syllable sequences

(syllable bigrams) with their frequency of occurrence. Our

algorithm, combined with these statistics, is capable of

processing virtually any given word. The algorithm used to

calculate the syllable trigram frequencies is listed below:

for each TextFile in the text corpus

Tokens=Tokenize(TextFile)

for each Token in Tokens

Chunuks

=DivideTokenIntoThreeSyllableChunks()

 for each ThreeSyllableChunk in Chunks

if ThreeSyllableChunk is in Database

then

Occurrence=Occurrence+1

 else if

 InsertIntoDatabase(ThreeSyllableChunk)

Occurrence=1

end if

 end for

end for

end for

Fig. 7. Syllable Trigram Frequency Algorithm

The syllable bigrams were calculated in a similar manner.

In our algorithm, the complexity and efficiency lie in the

permutation generation module. In this paper, we define the

term ‘complexity’ as the maximum number of words that

can be generated for a given word. Using the same distinct

word list obtained from the corpus, a few experiments were

carried out to find the most complex Sinhala word

(Additional details of these experiments are given in

Appendix C). The study revealed that a word of local origin,

„පු඿්තකාරාධිඳතිතුභන්රා‟ – librarians, can generate up to

3072 permutations. This word can be further inflected as

„පු඿්තකාරාධිඳතිතුභන්රාත්‟, increasing the number of

generated words up to 6144. Moreover, some lengthy

borrowed words from Pali such as

„ඳ චුඳාදාන඿්කන්ධඹන්ළගන්‟ (6144) and

„ළන඼඿ඤ්ඤාණා඿ඤ්ඤාඹතනඹාළේද‟ (9213) can generate up

to 12288 permutations due to further inflections (e.g.

„ඳ චුඳාදාන඿්කන්ධඹන්ළගනුත්‟). However, such words are

not used in everyday writing. Analysis of words with

complexity higher than 6144 revealed that most such words

are borrowed words that are no longer used in ordinary

Sinhala writing. Some other words in the test set were found

to be erroneous words (e.g. words with Unicode conversion

errors, non-delimited words etc). Though it is safe to declare

6145 as the threshold for the complexity, allowing room for

inflections of borrowed words and in order to shield the

TABLE II
EVALUATION RESULTS OF MICROSOFT OFFICE SPELL CHECKER

Test
No.

Total

Number of

Words

of correct
suggestions

of incorrect
suggestions

Accuracy
(%)

1 5505 3453 2052 62.72

2 5505 1668 3837 30.29

3 5505 2416 3089 43.88

4 3304 2131 1171 64.49

TABLE III

EVALUATION RESULTS OF OPEN OFFICE SPELL CHECKER

Test
No.

Total

Number of

Words

of correct
suggestions

of incorrect
suggestions

Accuracy
(%)

1 5505 1078 4427 19.58

2 5505 720 4785 13.08

3 5505 1047 4456 19.02

4 3304 2443 861 73.94

18 Asanka Wasala, Ruvan Weerasinghe, Randil Pushpananda, Chamila Liyanage and Eranga Jayalatharachchi

The International Journal on Advances in ICT for Emerging Regions 03 December 2010

system from intentional attacks, we have set a threshold of

20000 as the maximum complexity that can be handled by

the current implementation of our algorithm. The reason for

this limitation is to avoid deliberate attempts to break the

system by inputting a letter sequence with extremely high

complexity. Any input that will result in more than 20000

permutations will be left unprocessed. Such words will be

specially marked as „unchecked’ in the output. All modern

computers are capable of handing large amounts of data in a

fast and reliable manner due to increased memory capacity

and high-speed parallel processing capabilities. Therefore,

the generation of 20000 permutations can be completed

within a negligible amount of time. Furthermore, the study

revealed that the word length does not significantly affect

the complexity of a word (See Appendix C for details). The

average word length (i.e. the number of Unicode code

points) of Sinhala words was found to be 4. The locally

originating maximum length word was found to be

„ළජෝෝතිල්ලා඿්ත්රnයින්ළේ‟ – astrologists’ in this study. It is

interesting to note that there can be extremely lengthy

borrowed words (from Pali or Sanskrit) such as

„ළනත්රnාක්඾්ටරටහාවාධිර ජභර඿ර඿්බඵ්ලරීදළද ර්රතාි‟

though such words are very rare in modern texts.

VI. CONCLUSION AND FUTURE WORK

The implementation of an n-gram based spell checker for

Sinhala has been discussed in this paper. By substituting

phonetically similar characters in a given word,

permutations are generated and sent to the best suggestion

selection module. The best suggestion selection module uses

three techniques for ranking the generated permutations.

The three techniques are based on word unigram

frequencies, syllable trigram frequencies and syllable

bigram frequencies, which are pre-computed from a raw text

corpus. Empirical evaluation of our algorithm using four

different test cases has revealed extremely promising results.

A platform independent desktop application with a

graphical user interface (GUI) and a web-based version of

the same have been developed using the Python

programming language to demonstrate the functionality of

the proposed algorithm. The usage of the applications are

described in Appendix B. The accuracy of corrections

suggested by the algorithm can be increased by simply

adding non-existing words to the distinct word list and by

increasing the unigram frequencies of words with correct

spellings. It is expected to incorporate a crowd source based

automated mechanism for improving the accuracy of the

current spell checker.

 Further enhancements planned include the optimization

of the permutation generation module by storing and

processing data using a Trie [3] data structure. This will help

to effectively prune a large number of generated words to

only those that appear in the distinct word list. The current

algorithm is only capable of addressing substitution errors.

The success of the application of the Reverse Dictionary

Lookup methodology for other Indic languages [1] [4] [5]

has motivated us to attempt the same approach for Sinhala.

This will enable the algorithm to capture other types of

spelling errors such as insertion, deletion and transposition

[3] [4]. Research is underway to investigate the

incorporation of the n-gram score computation methodology

proposed in [9] for this purpose.

The algorithm applied for Sinhala, can also be used to

construct spell checkers for other languages in which

linguistic resources are scarce or non-existent. It is of

particular relevance to languages which have rich

morphology and thus are difficult to completely enumerate

in a lexicon. Furthermore, the same algorithm can be

utilized for the identification of homographs and common

spelling mistakes found in Sinhala. To the best of our

knowledge this is the first study and evaluation of a Sinhala

spell checker algorithm. This study has opened up new

opportunities for further research and will provide a baseline

for comparison and evaluation of Sinhala spell checking

algorithms in future.

APPENDIX A

Sinhala Spelling Rules

1. Use of Retroflex ණ /ɳ/ in Sinhala

1. Intervocalic Sanskrit and Pali ණ /ɳ/ does not get

evolved [14].

Example: ළයෝවණ /ro:hǝɳǝ/ > ළයෝවණ /ro:hǝɳǝ/

> රුහුණු /ruhuɳu/

2. Sanskrit „඾්ණ‟ /ʂɳ/ > Pali „ණ්ව‟ /ɳh/ > Sinhala

ණ /ɳ/ [14]

Example: උ඾්ණ /uʂɳǝ/ > උණ්ව /uɳhǝ/ > උණු

/uɳu/, උණ /uɳǝ/

3. Retroflex ණ /ɳ/ is used in front of a retroflex

consonant. Retroflex consonants are ට /ʈ/, ඨ /ʈh/,

ඩ /ɖ/, ඪ /ɖh
/.

Examples: ඝණ්ටාය /g
h
aɳʈa:rǝ/, කාණ්ඩ /ka:ɳɖǝ/,

චණ්ඩාර /ʧaɳɖa:lǝ/

 Exceptions:

i. Dental න /n / is used before a retroflex

consonant in words borrowed from

western languages [16].

Examples: කවුන්ටයඹ /kaun ʈǝrǝjǝ/,

කැන්ටිභ /kæn ʈimǝ/

ii. Dental න /n / is used without a vowel

before the letter /ʈ/ in dative case nouns

[16].

Examples: දරු඼න්ට /d aruvan ʈǝ/,

මිනිසුන්ට /min isun ʈǝ/

Asanka Wasala, Ruvan Weerasinghe, Randil Pushpananda, Chamila Liyanage and Eranga Jayalatharachchi 19

December 2010 The International Journal on Advances in ICT for Emerging Regions 03

iii. In Sinhala, the suffix ට /-ʈǝ/ occurs in

infinitives. In that case the /n / in front of it

doesn‟t appear as a retroflex /ɳ/.

Example: රඵන්ට /laban ʈǝ/, කිඹන්ට

/kijan ʈǝ/

4. In certain constructions, germinated ණ /ɳ/

occurs. But those constructions belong to

Indian languages.

Examples: උප්ඳර඼ණ්ණ /uppǝlǝvaɳɳǝ/,

කණ්ණාඩි /kaɳɳa:ɖi/

5. Retroflex ණ /ɳ/ is used after ය /r/ in nouns

and adjectives [15].

Examples: ඼ර්ණ /varɳǝ/, ඳහාණත /pariɳǝt ǝ/,

තරුණ /t aruɳǝ/

 Exceptions :

i. Dental න /n / is used before the letter ය

/r/ in nouns.

Examples: ළත යන් /t oran /, රෑන් /r :n /,

ළය න් /ron / [16]

ii. Dental න /n / is used after the letter ය /r/

in verbs [15].

Examples: කයන඼ා /kǝrǝn ǝva/, භයන඼ා

/marǝn ǝva/, ළතෝයන඼ා /t o:rǝn ǝva/

iii. In present participles, the suffix න /-n ǝ/

occurs. It is not written as a retroflex ණ

/ɳ/ in the vicinity of ය /r/.

Present participle Noun

Examples: භයන /marǝn ǝ/ භයණ

/marǝɳǝ/

iv. Dental න /n / is used in the imperative

verb suffix නු /-n u/.

Examples: කයනු /kǝrǝn u/, දයනු /

d arǝn u/, වහානු /harin u/

6. In certain evolved words, ණ /ɳ/ appear in

original words. In certain borrowed words ය

/r/ is not fully recorded. But half of it is called

rakaransa. In the vicinity of Rakaransa

retroflex ණ /ɳ/ is written.

Examples: ආභන්ත්රnණ /a:man t rǝɳǝ/, ඳහාත්රnාණ

/parit ra:ɳǝ/, ළේtණි /ʃre:ɳi/

7. Retroflex ණ /ɳ/ is used after the retroflex ඾

/ʂ/.

Examples: ත්඾්ණා /t ruʂɳa:/, ගළේ඾ණ

/gave:ʂǝɳǝ/, දක්ෂිණණ /d akʂiɳǝ/

8. In the honorific suffix ආණ /-a:ɳǝ/ and its

variations always occurs ණ /ɳ/ [14].

Example: ආණ /-a:ɳǝ/ අණු /-aɳu/ අණි /-

aɳi/

පිඹාණන් /pija:ɳan / ළතයණු඼න් /t erǝɳuvan /

දිඹණි /d ijǝɳi/

9. Retroflex ණ /ɳ/ is used in suffixes that ණ /-

ɳǝ/ and ණි /-ɳi/ in intransitive past tense

verbs.

Examples: ණ /-ɳǝ/ ණි /-ɳi/

 siɳǝ v ʈǝhiɳi

10. Retroflex ණ /ɳ/ is used in suffixes that ණු /-

ɳu/ and ණ /-ɳǝ/ in ancient intransitive verb

particles.

 Examples: ණු /-ɳu/ ණ /-ɳǝ/

 ඉදුණු /id uɳu/ ඼ැටුණ /v ʈuɳǝ/

2. Use of Dental න /n / In Sinhala

1. Sanskrit ර්ණa /rɳ/ > Pali ණ්ණ /ɳɳ/ > Sinhala

න /n / [14]

Example: කර්ණa /karɳǝ/ > කණ්ණ /kaɳɳǝ/ >

කන් /kan /

2. Sanskrit ඍණ්ව /rhɳ/ > Pali ණ්ව /ɳh/ >

Sinhala න /n / [14]

Example: ග්ව්ණාති /grhɳa:t i/ > ගණ්වාති

/gaɳha:t i/ > ගනු /gan u/

3. Sanskrit ඥ /ʤɲ/ > Pali ඤ /ɲ/, ඤ්ඤ /ɲɲ/ >

Sinhala න /n / [14]

Example: ඥාති /ʤɲa:t i/ > ඤාති /ɲa:t i/ > නෑ

/n æ:/

4. Sanskrit නෝ /n j/, ණෝ /ɳj/ > Pali ඤ්ඤ /ɲɲ/

> Sinhala න /n / [14]

Example: පුණෝ /puɳjǝ/ > පුඤ්ඤ /puɲɲǝ/ >

පින් /pin /

5. Sanskrit ල්න /ʃn /, ඾්ණ /ʂɳ/ > Pali ඤ්ව /ɲh/

> Sinhala න /n / [14]

Example: ප්රeල්න /praʃn ǝ/ > ඳඤ්ව /paɲhǝ/ >

ඳැන /pæn ǝ/

6. Sanskrit ණ /ɳ/ > Pali න /n / > Sinhala න /n /

[14]

Example: නිර්වාාණ /n irva:ɳǝ/ > නිබ්ඵාන

/n ibba:n ǝ/ > නි඼න් /n ivan /

20 Asanka Wasala, Ruvan Weerasinghe, Randil Pushpananda, Chamila Liyanage and Eranga Jayalatharachchi

The International Journal on Advances in ICT for Emerging Regions 03 December 2010

7. Dental න /n / is used without a vowel in front

of a dental consonant. Dental consonant are ත

/t /, ථ /t
h/, ද /d /, ධ /d

h
/ [16]

Examples: ත /t / - චින්තන /ʧin t ǝn ǝ/, ලාන්ත

/ʃa:n t ǝ/, කාන්තා /ka:n t a:/

 ථ/t
h/ - ග්රuන් ථ /gran t

h
ǝ/, භන්ථ /man t

h
ǝ/

ද /d / - ළක න්ද /kon d ǝ/, භන්දිය /man d ira/,

සින්දු /sin d u/

ධ /d h/ - අන්ධ /an d
h
ǝ/, ඿ම්ඵන්ධ

/samban d
h
ǝ/, ඿න්ධි /san d

h
i/

8. If a Sinhala word contains a geminated nasal

consonant it should be dental න /n /.

Examples: ආ඿න්න /a:san n ǝ/, ඼න්නම්

/van n am/, ඼න්නි /van n i/

9. Dental න /n / is used without a vowel before ඿

/s/ [16].

Examples: ඳන්඿්ල /pan sal/, කාන්සි /ka:n si/,

඼වන්ළ඿t /vahan se:/

10. The nasal that occurs at inanimate noun roots

which ends in ඉ /i/ or උ /u/ is dental න /n /.

When singular suffix අ /-ǝ/ occurs at end

position of a word the last consonant doubles.

Examples: ගිනි /gin i/, පිනි /pin i/, ඔටුනු

/oʈun u/, දුනු /d un u/

11. Dental න /n / is used after ඿ /s/ or ල /ʃ/[17].

Example: ඿ /s/ – උදෑ඿න /ud :sǝn ǝ/,

඼ා඿නා /va:sǝn a:/, ළ඿tනා /se:n a:/

ල /ʃ/ - දර්ලන /d arʃǝn ǝ/, ප්රeකාලන

/prǝka:ʃǝn ǝ/, ශූනෝ /ʃün jǝ/

12. Dental න /n / without a vowel is used in

endings of noun roots.

Examples: ඳා඼වන් /pa:vahan /, ඼දන් /vad an /

13. Dental න /n / is used after ය /r/ in compound

nouns.

Examples: ඼වයනු඿ළයන් /vaharan usaren /,

පිහානි඼න් /pirin ivan /, ඵණ්ඩායනාඹක

/baɳɖa:rǝn a:jǝkǝ/

3. Use of Retroflex ශ /ɭ/ in Sinhala

1. Sanskrit and Pali ට /ʈ/, ඨ /ʈh/, ඩ /ɖ/, ඪ /ɖh/ >

Sinhala ශ /ɭ/ (Jayathilake, 1937)

Example: කූඨ /ku:ʈhǝ/ > කශ /kaɭǝ/

2. Pali ශ /ɭ/ > Sinhala ශ /ɭ/ [17]

Example: ද්ඪ /d rɖ
h
ǝ/ > දශ්ව /d aɭhǝ/ >

 දශ /d aɭǝ/

3. Sanskrit and Pali ණ /ɳ/ > Sinhala ශ /ɭ/ [17]

Example: ඼ාණිජෝා /va:ɳiʤʤa:/ > ඼ණිජ්ජා

/vaɳiʤʤa:/ > ළ඼ළශ඲ /veɭen
d ǝ/

4. Where both ර /l/ and ශ /ɭ/ obtain as alternatives

in Pali Sinhala generally adopts the latter ශ /ɭ/

[14].

Example: දලි්බද /d aliddǝ/, දළි්බද /d aɭid d ǝ/ > දිළිඳු

/d iɭi
n
d u/

5. Retroflex ශ /ɭ/ is used on behalf of ය /r/ in past

participles which are composed from verb roots

ending in ය /r/.

Examples: කය /karǝ/ - කශ /kaɭǝ/

භය /marǝ/ - භශ /maɭǝ/

6. Prefix පිළි /piɭi-/, which is derived from a Sanskrit

prefix ප්රeති /prət i-/, is used with retroflex ශ /ɭ/.

Examples: පිළිගන්න඼ා /piɭigan n ǝva/, පිළිතුරු

/piɭit uru/, පිළිඵ඲ /piɭiban
d ǝ/

7. Retroflex ශ /ɭ/ is used excessively before the

nasalized consonants ඟ /ŋg/, ඲ /n
d /, ම /m

b/.

Examples: ශඟ /ɭaŋgǝ/, ශ඲ /ɭan
d ǝ/, ළක ශම

/koɭǝ
m
bǝ/ [15]

Exceptions:

1. Following words use the dental ර /l/ [15].

Examples: ළඳ රම /pola
m
bǝ/, ඿රම /salǝm

bǝ/

4. Use of Dental ර /l/ in Sinhala

1. Sanskrit and Pali ර /l/, ්ලර /ll/ > Sinhala ර /l/

Example: භව්ලරක /mahallǝkǝ/ > භවලු /mahalu/

[17]

2. Sanskrit and Pali ය /r/, න /n / > ර /l/ [14].

Example: කරුණා /karuɳa:/ > කුලුණු /kaluɳu/

 ඼න /van ǝ/ > ඼්ල /val/

3. The Halant form ර /l/ occurring at the end position

of noun roots is always the dental ර /l/. When such

words combine with the vowels, they retain the

dental ර /l/.

Examples: කකුර /kakulǝ/ කකු්ල /kakul/, ගළඩ ර

/gaɖolǝ/ ගළඩ ්ල /gaɖol/, කයර /karǝlǝ/ කය්ල

/karal/

4. When doubling the word-end consonant in the

inflection of noun roots ending in ඉ /i/ or උ /u/, the

dental ර /l/ is retained.

Examples: ඇඟිලි /æŋ
gili/ – ඇඟි්ලර /æŋ

gillǝ/

භවලු /mahalu/ - භව්ලරා /mahalla: /

Asanka Wasala, Ruvan Weerasinghe, Randil Pushpananda, Chamila Liyanage and Eranga Jayalatharachchi 21

December 2010 The International Journal on Advances in ICT for Emerging Regions 03

5. Use of Retroflex ඾ /ʂ/ in Sinhala

1. Retroflex ඾ /ʂ/ is used after ක /k/ without a

vowel.

Examples: අක්ෂfය /akʂǝrǝ/, දක්ෂf /d akʂǝ/, ික්ෂුʃ

/b
h
ikʂu/

2. Retroflex ඾ /ʂ/ is used without a vowel before the

letters of ට /ʈ/ and ඨ /ʈh/.

Examples: අධි඾්ඨාන /ad hiʂʈha:n ǝ/, ළජෝt඾්ඨ

/ʤje:ʂʈ
h
ǝ/, ධර්මි඾්ඨ /d harmiʂʈ

h
ǝ/

දි඾්ටිඹ /d iʂʈijǝ/, දු඾්ට /d uʂʈǝ/, ශි඾්ට /ʃiʂʈǝ/

6. Use of Palatal ල /ʃ/ in Sinhala

1. Palatal ල /ʃ/ is used before dental න /n /.

Examples: දර්ලනඹ /d arʃǝn ǝjǝ/, ළ්බලනඹ

/d e:ʃǝn ǝjǝ/, ප්රeල්න /praʃn ǝ/

APPENDIX B

Implementation of the algorithm

A platform-independent desktop application with a

graphical user interface (GUI) and a web-based version of

the same has been developed using Python programming

language to demonstrate the functionality of the algorithm

proposed in this paper.

The desktop version of the implementation (Figure B.1)

automatically corrects the spellings for the input text. The

left pane contains the input text and the right pane contains

the corrected text.

The web-based version (Figure B.2) highlights the

incorrect words and provides suggest corrections as a right-

click context menu. The user can replace the text there in. In

addition, correct words are flagged differently to provide

improved visual feedback to the user. The suggestions

provide additional information as to from which n-gram

statistic (word unigram, syllable trigram or syllable bigram)

the suggestion was made.

The web-based version has been further developed to

facilitate user submissions of corrections to the system for

improving the quality of the spellchecking functionality.

This is available at http://www.subasa.net/.

Example: ඳාඨ඿ාරාචාහානිඹ „ශදරු භයණ අනුඳාතඹ ඉවර ඹෑභ‟

පිළිඵ඲ ළ්බලණඹක් අලුත්ගභ කණි඾්ඨ විදෝාරයඹ ේ඼ණාගායළදී

ඳැ඼ැත්ීදඹ.

APPENDIX C

A few experiments were performed to investigate the

relationship between complexity, word length and corpus

word frequency. We computed complexity and length of all

unique words (440,022) found in the 10 million

(10,132,451) word UCSC Sinhala Corpus.

A. Complexity Vs. Length

The first experiment investigated the relationship between

word length and the complexity. Having removed any

duplicates for word length and complexity pairs, ln

(complexity) vs. word length graph was plotted. (See Figure

`C.1). This graph shows that there can be words with the

same length but different complexity values. The graph was

of sawtooth type and when the word length is above 30,

complexities for a particular word length decreased; at word

length 60, complexity was 32. This showed that there is no

proportionality between complexity and word length.

B. Complexity Vs. Frequency

To observe the relationship between Frequency and

Complexity, ln(frequency) vs. ln(complexity) graph was

drawn (see Figure C.2), where frequency for a particular

complexity meant the summation of all frequencies

corresponding to the words having that same complexity.

This also was a sawtooth type graph and generally when the

complexity increased the frequency decreased. But there

was no regular pattern of decrease and we can safely say

that there is no strong relationship between the frequency

and the complexity.

C. Frequency Vs. Length

The third graph analysed the relationship of frequency to

the word length to get a general idea about the distribution

of words in the corpus. This graph plotted ln(frequency)

against the word length (see Figure C.3). Up to word length

of 4, the graph shows a drastic increase. At word length 4,

the graph reaches the maximum frequency of 1647009.

Further increase of word length shows a downward trend of

frequency. It was also observed that the average Sinhala

word length is 4. For word lengths beyond 25 it showed a

sawtooth type behaviour and as the word-length goes over

43, it showed only a very low frequency most of the times.

These extremely lengthy words were found to be erroneous

words (i.e. corpus noise: typos, cleaning errors, Unicode

conversion errors) in the raw corpus.

From all the above analyses, we can clearly say there is no

relationship between the word length and the complexity.

ACKNOWLEDGMENT

We are immensely grateful to Professor Tissa

Jayawardenan for reviewing the linguistic rules. We also

thank our colleagues Vincent Halahakone, Namal

Udalamatta and Jeewanthi Liyanapathirana who provided

insight and expertise that greatly assisted this research. We

would also like to thank the Localisation Research Centre,

University of Limerick, Ireland; especially Reinhard Schäler

and Karl Kelly for their invaluable support.

REFERENCES

[1] B. B. Chaudhuri, "Towards Indian language spell-checker design,"

Language Engineering Conference (LEC'02), 2002, p. 139.

[2] M. Das, S. Borgohain, J. Gogoi, S. B. Nair, "Design and

Implementation of a Spell Checker for Assamese," Language

Engineering Conference (LEC'02), 2002, p. 156.

http://www.subasa.net/

22 Asanka Wasala, Ruvan Weerasinghe, Randil Pushpananda, Chamila Liyanage and Eranga Jayalatharachchi

The International Journal on Advances in ICT for Emerging Regions 03 December 2010

[3] K. Kukich, Techniques for automatically correcting words in text. in

ACM Computing Surveys, vol. 24, no. 4, 1992, pp. 377-439.

[4] B. B. Chaudhuri, "Reversed Word Dictionary and Phonetically

Similar Word Grouping Based Spell Checker to Bangla Text," in

Proceedings of the LESAL Workshop, Mumbai, India, 2001.

Fig B.1. The Desktop Application

Fig B.2. The Web-Based Application

Asanka Wasala, Ruvan Weerasinghe, Randil Pushpananda, Chamila Liyanage and Eranga Jayalatharachchi 23

December 2010 The International Journal on Advances in ICT for Emerging Regions 03

[5] T. Santhosh, K. G. Varghese, R. Sulochana, and R. Kumar,

"Malayalam Spell Checker," in Proceedings of the International

Conference on Universal Knowledge and Language - 2002, Goa,

India, 2002.

[6] V. Dixit, S. Dethe, and R. K. Joshi, "Design and Implementation of a

Morphology-based Spellchecker for Marathi, an Indian Language,"

Archives of Control Sciences, vol. 15, no. 3, (n.d.), pp. 301-308.

[7] T. Dhanabalan, R. Parthasarathi, and T. V. Geetha, "Tamil Spell

Checker", In Proceedings of 6th Tamil Internet 2003 Conference,

Chennai, Tamilnadu, India, 2003.

[8] S. Hussain, N. Durrani, and S. Gul. (2005). Survey of Language

Computing in Asia, Center for Research in Urdu Language

Processing, National University of Computer and Emerging Sciences.

[Online]. Available:

http://www.panl10n.net/english/outputs/Survey/Sinhala.pdf.

[9] F. Ahmed, E. W. D. Luca, and A. Nürnberger, "MultiSpell: an N-

gram based language-independent spell checker," In poster session of

8th International Conference on Intelligent Text Processing and

Computational Linguistics (CICLing-2007), Mexico City, Mexico,

1997.

[10] A. Wasala, R. Weerasinghe, and K. Gamage, “„Sinhala grapheme-to-

phoneme conversion and rules for schwa epenthesis,”. In Proceedings

of the COLING/ACL Main Conference Poster Sessions, 2006, pp.

890-897.

[11] J. B. Disanayaka, Sinhala Akshara Vicharaya (Sinhala Graphology),

Sumitha Publishers, 2006, ISBN: 955-1146-44-1.

[12] W. S. Karunatillake, An Introduction to Spoken Sinhala (3rd Edn.),

M. D. Gunasena & Co. Ltd., 217, Olcott Mawatha, Colombo 11, Sri

Lanka, 2004, ISBN 955- 21-0878-0.

[13] J. W. Gair, and W. S. Karunatillake, The Sinhala Writing System, A

Guide to Transliteration, Sinhamedia, P.O. Box 1027, Trumansburg,

NY 14886, 2006.

[14] J. Lanerolle, The Uses of න-/n/,ණ-/ɳ/ and ර-/l/, ශ -/ɭ/ in Sinhalese

Orthography, The Times of Ceylon Company Limited, Colombo,

1934.

[15] S. Koparahewa. Dictionary of Sinhala Spelling, S. Godage and

Brothers, Colombo 10, Sri Lanka, 2006, ISBN 955-20-8266-8.

[16] J. B. Disanayaka, The Usage of Dental and Cerebral Nasals, Sumitha

Publishers, 2007, ISBN: 978-955-1146-66-5.

[17] D. B. Jayathilake, Sinhala Shabdakoshaya (Sinhala Dictionary),

Prathama Bhagaya (Vol 1), Sri Lankan branch of Royal Asian

Society, 1937.

[18] http://www.mysinhala.com/features.htm,

http://www.microimage.com/press/MicroimageDirectOctober2005.ht

m and http://www.scienceland.lk/spell-checker.html

[19] http://hunspell.sourceforge.net/

[20] http://wiki.services.openoffice.org/wiki/Dictionaries#Sinhala_.28Sri_

Lanka.29

[21] https://addons.mozilla.org/en-US/firefox/addon/13981/

[22] http://www.sasrutha.com/ and

http://www.facebook.com/note.php?note_id=176602427414

[23] The UCSC Sinhala Corpus is a ten million word raw corpus compiled

from various sources.
http://www.ucsc.cmb.ac.lk/ltrl/?page=panl10n_p1&lang=en&style=d

efault#corpus

[24] The blog posts were collected from http://blogs.sinhalabloggers.com/
(a popular Sinhala Unicode blog syndicator) on 1st of September,

2009.

Fig C.1. The Graph of ln(Complexity) vs. Word Length

http://www.panl10n.net/english/outputs/Survey/Sinhala.pdf
http://www.microimage.com/press/MicroimageDirectOctober2005.htm
http://www.microimage.com/press/MicroimageDirectOctober2005.htm
http://www.scienceland.lk/spell-checker.html
http://hunspell.sourceforge.net/
http://wiki.services.openoffice.org/wiki/Dictionaries#Sinhala_.28Sri_Lanka.29
http://wiki.services.openoffice.org/wiki/Dictionaries#Sinhala_.28Sri_Lanka.29
https://addons.mozilla.org/en-US/firefox/addon/13981/
http://www.sasrutha.com/
http://www.facebook.com/note.php?note_id=176602427414
http://www.ucsc.cmb.ac.lk/ltrl/?page=panl10n_p1&lang=en&style=default#corpus
http://www.ucsc.cmb.ac.lk/ltrl/?page=panl10n_p1&lang=en&style=default#corpus
http://blogs.sinhalabloggers.com/

24 Asanka Wasala, Ruvan Weerasinghe, Randil Pushpananda, Chamila Liyanage and Eranga Jayalatharachchi

The International Journal on Advances in ICT for Emerging Regions 03 December 2010

Fig C.2. The Graph of ln(Frequency) vs. ln(Complexity)

Fig C.3. The Graph of ln(Frequency) vs. Word Length

