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Abstract—Acquiring precise labels for continuously flowing 
data streams is resource-intensive and costly. Active learning 
offers a potential strategy for training precise models while 
minimizing label requirements with minimal annotation effort. 
However, adapting active learning to streaming data becomes 
intricate due to the ever-changing data distributions, known 
as concept drift. Existing approaches for active learning in 
data streams predominantly rely on uncertainty sampling and 
Query by Committee (QBC) due to their simplicity and ease 
of implementation. This paper introduces a novel and a robust 
active learning approach tailored for data streams merging key 
elements from QBC and density-weighted sampling to effectively 
address the challenges posed by concept drift. Through a com-
prehensive analysis using benchmark datasets widely used in the 
literature related to data streams, we demonstrate the superior 
performance of our proposed method across various data stream 
scenarios. This includes instances with no concept drift, instances 
with the presence of concept drift, as well as scenarios involving 
severe concept drift. In addition, the results reveal that strategies 
based on uncertainty sampling and its variants exhibit limitations 
in the presence of concept drift, whereas QBC and its variants 
prove to be inadequate when faced with significant concept drift. 
In contrast, our approach, which combines the strengths of 
QBC and density-weighted sampling using Gower’s distance as a 
similarity measure, exhibits remarkable adaptability to evolving 
data distributions.

Index Terms—Density-Based Sampling; Query By Committee; 
Active Learning; Evolving Data

I. INTRODUCTION

Recent technological advancements and the proliferation
of automated data collection methodologies have led to an
unprecedented data deluge. However, a considerable portion of
this data remains unlabeled, creating significant challenges due
to the high cost of transforming it into labeled forms, which
requires a process necessitating human expertise or oracles.
Supervised learning, a popular branch of machine learning,
relies heavily on accurate labels, rendering this methodology
is potentially ineffective and costly if the expense of labeling
exceeds the allocated budget.

Active learning, often referred to as query learning, offers
a promising solution to address the challenges associated with
high labeling costs. Its foundational hypothesis postulates that
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if a machine learning algorithm were allowed to select the data
from which it learns, it could enhance its performance with
less required training. The primary goal of active learning is to
reduce the necessary training sample size while maintaining
high prediction accuracy, thereby improving data efficiency.
It is already being progressively employed within software
companies and large-scale research projects, including those at
Cite Seer, Google, IBM, and Microsoft. Active learning aims
to enhance the efficiency of labeled data by selectively query-
ing the most informative examples. In situations where data
streams at high velocities and needs to be processed in real-
time or near-real-time environments, labelling every incoming
data point becomes impractical due to time constraints, even
with a substantial labeling budget.

In high-velocity scenarios where real-time labeling is re-
quired, active learning shines. Instead of randomly selecting
data points from the stream for labeling, which may or may not
be informative, active learning strategically chooses the most
informative instances. By doing so, it maximizes the utility
of each labeled example, leading to faster and more accurate
model training.

Moreover, in high-speed data streaming contexts, active
learning provides a more data-efficient approach by intel-
ligently selecting which data points to label, as opposed
to relying on random selection. Data streams represent an
infinite and fast-flowing source of data. Unlike batch data, data
streams are continuous, requiring real-time or near-real-time
analytics due to storage constraints and the necessity for timely
decision-making. Examples of such streaming data can be
found in daily transactions, sensor readings, web data, social
media feeds, Internet of Things (IoT) devices, and online
monitoring systems.

Addressing the challenges posed by streaming data requires
a different approach than that is used with batch data. One
of the key challenges is concept drift, which involves the
evolution or change in data distribution over time. Addi-
tionally, unlike batch data, which allows for multiple data
passes, streaming data necessitates one-pass processing (pre-
processing of the data must be done at a single step). The high
velocity of data streams and the need for significant computa-
tional power to process data in real-time make these challenges
more complex. Using static, batch-data algorithms in this
context often leads to models quickly becoming outdated due
to concept drift. Moreover, considering that access is only
granted to the data in motion, batch learning algorithms are
inadequate for building predictive models for streaming data.
This paper aims to explore these issues and potential solutions
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in depth, providing an active learning query strategy that can
be integrated with machine learning models for streaming data.

II. RELATED WORK

Active learning concepts are widely applied in the super-
vised learning setting; in addition, these concepts are employed
in unsupervised learning and function optimization [1]. Wen-
bin (2013) [2] states that active learning has been extensively
studied for classification problems, and only minimal work
is done on active learning for regression compared to clas-
sification. For classification and regression problems, several
widely used algorithms are stated by [3]. In addition, the study
[4] provides glimpses of integrating active learning along with
deep learning models. All these active learning strategies are
categorized into three categories, namely, heterogeneity-based,
performance-based, and representativeness-based, depending
on their underlying theories [5].

Query-By Committee (QBC) algorithm [6] is found to be
the first active learning query strategy as per the literature. The
QBC strategy generates a committee of models and selects
the most unlabelled examples about which committee mem-
bers disagree. QBC has been used with probabilistic models,
specifically with the naı̈ve Bayes model for text classification
[7]. In early studies it has been claimed that this algorithm
does not perform well in text classification when integrated
with methods such as support vector machines. However, the
results obtained from the studies by Settles and Craven in
2008 [8] contradict the previous findings and show that even
committees of small sizes tend to work well in practice for
most real-world applications [6] [3] [9].

Uncertainty sampling is another active learning query strat-
egy introduced in the paper [10]. It is one of the most widely
used approaches where the learner will query the actual label
of the instance where the classifier is most uncertain. This
active learning strategy is extensively utilized since it is simple
to apply with probabilistic models [2].Besides the above active
learning query strategies in the literature, two other widely
used active learning strategies in classification are defined as
expected model change and density-based methods. Moreover,
it is identified that the expected model change approach func-
tions well in reality but might be computationally expensive
if the feature space is substantial. However, this strategy is
not limited to classification; it can also be used in the context
of regression [3]. Density-based methods are another active
learning strategy suggested by [3]. This strategy takes the
representativeness and informativeness of observation when
querying which observations are to be labeled. A variety of
similar active learning query strategies existed before develop-
ing this strategy. For example, a density-based QBC approach
for text classification has been carried out by McCallum and
Nigam [7], and Nguyen and Smeulders (2004) [11] proposed
a strategy that uses nearest neighbors as a similarity measure
to evaluate the representativeness of the instances.

Much of the active learning strategies in literature is focused
on batch data setting. However, there are several studies that
focus on introducing active learning strategies for streaming
data. A comprehensive study has been carried out by [12]

on the active learning classification of streaming data. The
study states that the accuracy does not strongly depend on the
number of labelled objects, and 20% is enough to achieve
a very similar accuracy as the full supervised approach.
Moreover, it is reported that the machine learning model’s
performance affects the performance of the active learning
query strategy. The KNN and Naı̈ve Bayes algorithms per-
formed considerably well compared to that of the rule classifier
and the perceptron used. The study further expresses that
setting a higher threshold for querying will negatively impact
the classifier’s stability as the model’s standard deviation
increases. An even more comprehensive study compared to
the above study has been carried out by [13]. The study is
completely based on uncertainty sampling query strategy for
streaming data where the performance of the query strategy is
evaluated using four different variants, which include random
strategy, fixed uncertainty, variable uncertainty, and random-
ized variable uncertainty. In this case, the random strategy
acts as the baseline model for comparing the performance
of active learning. Fixed uncertainty query instances depend
on a fixed threshold throughout the stream, while the other
two techniques will have a variable threshold that changes
according to the incoming stream. In addition, the random-
ized uncertainty strategy will query instances randomly from
the stream. The results suggest that the variable uncertainty
performs well in many cases but only in situations where
drift is not strongly expressed. If a more significant drift is
expressed, then randomized uncertainty prevails over the other
techniques.

In the literature on AL for data streams, there are only a
handful of studies that focus on AL approaches when the data
stream is evolving. A study by Lughofer (2012) [14] proposes
an AL algorithm based on concepts of conflict and ignorance.
Conflict models the extent to which incoming data point lies in
conflict regions of two or more classes. This reflects the level
of certainty of the classifier about the prediction of that data
point. Ignorance models the an incoming data point’s distance
from the training samples seen so far. This reflects the actual
variability of the version space. This approach was initially
defined for classification tasks. However, later on, Lughofer
and Pratama (2018) [15] extended this approach to evolving
regressing models also. Another AL approach for evolving
data streams is proposed in [16]. This approach uses a dynamic
threshold based on the variable uncertainty strategy introduced
in [13] with a recurrent fuzzy classifier. However, there is a
gap in the literature regarding the integration of ignorance
and conflict models [15] and density-based sampling [3]
with a variable threshold strategy. While approaches utilizing
variable thresholds exist, they have not been combined with the
strengths of ignorance and conflict models for active learning
on evolving data streams. This presents an opportunity for
further research to explore the potential benefits of such a
combined approach. In addition to these AL approaches which
focus on evolving streams, a technique called stream-based
active learning (SAL) has been proposed by [17], which can
handle both the drift and evolution of the stream. SAL aims
to optimize the expected future error, using non-parametric
Bayesian Modelling.
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Studies [18] [19] [20] explores the current state of active
learning (AL) approaches for data streams. The study empha-
sizes that, while numerous active learning query strategies
have been developed to identify the most informative data
points for models, several challenges arise when applying
these techniques in real-world scenarios. These challenges
include algorithm scalability, data drift, and model inter-
pretability.

As per the above study, the primary challenge is algorithm
scalability, where the algorithms need to be both efficient
and scalable to manage large datasets. As the data volume
increases, the computational demands of these algorithms
can grow exponentially. Furthermore, these techniques must
provide clear interpretations of why specific data points are
deemed informative, ensuring transparency and validating the
algorithm’s decisions. In response to these challenges, this
study aims to develop an active learning query strategy that ef-
ficiently handles data streams while maintaining interpretabil-
ity.

In conclusion, the literature highlights the need for robust
AL approaches that can handle dynamic and evolving data
streams. Furthermore, literature on batch data sets indicates
that by blending existing AL strategies, more robust AL
strategies can be invented. Therefore, it is valuable to extend
these insights to streaming data settings, with the goal of
creating robust AL approaches for data streams that prioritize
simplicity and interpretability, while also ensuring computa-
tional efficiency.

III. STRATEGIES

A noteworthy finding from the literature is the effectiveness
of density-based sampling (also referred to as Density-based
sampling), particularly in the context of batch data settings.
Although the term ”density-based” implies a formal density
function, these strategies, as noted by [3], leverage the broader
concept of data distribution to identify informative data points
for labeling. Imagine your data as points scattered in a space.
Dense regions represent areas with many data points close
together, while sparse regions have fewer points spread out.
density-based active learning focuses on selecting points near
the boundaries between these regions. These points are likely
more uncertain for the model due to a lack of similar training
examples. By prioritizing these ”boundary points” for labeling,
the model can improve its understanding of the decision
boundaries between different classes, ultimately enhancing its
performance.

This result is validated by Settles [3] as it was identified that
density-based sampling approaches are superior to methods
that do not consider density measure to measure the repre-
sentativeness of the data point. Elaborating further, the data
point A in Figure 1 is the most uncertain and influential
observation for the model. However, data point A is not
representative of other instances considered. So, querying the
actual label of A is unlikely to improve the accuracy of the
overall model. These issues can be addressed by explicitly
incorporating the representativeness aspect when querying the
incoming instances.

Building on this insight, we have developed two innovative
active learning query strategies that integrate the principles of
density-based methods with the Query-By-Committee (QBC)
and uncertainty (refer to Appendix 3). Through the analysis,
it was observed that density-based QBC outperforms density-
based uncertainty in all three scenarios considered (refer to
Appendix 4). Consequently, this paper exclusively focuses on
the density-based QBC strategy. This approach capitalizes on
the strengths of density-based sampling in conjunction with
the QBC sampling technique.

Fig. 1: Figure indicating that most uncertain data is not the most
important [3]

Following the QBC algorithm, the most informative in-
stances from the stream are determined using vote entropy.
The selection criterion is to query the actual label of instances,
which maximizes the following statistic.

x∗
V E = argmax

x

[
−
∑
i

V (yi)

C
log

(
V (yi)

C

)]
(1)

Where:

C represents the size of the committee
V (yi) is the count for each label obtained from the committee

The equation 3.1 gives vote entropy which can be used as a
measure of informativeness. Further, we require a representa-
tive measure. The reason for including a representative mea-
sure alongside the informative measure is to account for the
possibility that the most influential and outlying observations
may be identified as the data points to be queried (the model is
most uncertain). However, these points are unlikely to improve
the overall model accuracy significantly. Using a representative
measure, we explicitly incorporate the input distribution when
querying the accurate labels to address this issue.

In the case of batch data, where the entire unlabeled set
is available, it is possible to identify data that represents
densely populated areas. However, this becomes impossible
with streaming data, as the unlabeled set cannot be utilized
due to its constant state of flux. Hence, it is proposed to use
the labeled set to assess the representativeness of the incoming
instances. Moreover, storing all labeled instances may not be
feasible because data streams can be infinitely long. Instead,
[21] suggests a moving window approach, which involves a
user-defined window size that includes the most recent labeled
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instances. These labeled data can then be used to compute the
similarity measure.

Gower’s distance has been utilized for calculating the
distance-based similarity measure when assessing representa-
tiveness. If Euclidean distance, Manhattan distance, or Jaccard
distance is employed as the similarity measure, our developed
active learning query strategy would be constrained by the
data type; it could only be applied with either numerical data
or categorical data (as in the case of Jaccard Distance), but
not both. To circumvent this limitation, the decision has been
made to utilize Gower’s distance, allowing the technique to
be generalized to any streaming dataset regardless of it being
categorical or quantitative. This choice empowers our model
to handle various data types, including logical, numerical,
categorical, or even text data. This flexibility makes Gower’s
distance a powerful and versatile tool in the computation
of the representativeness measure in our density-based active
learning query strategy [22]. Further, the utilization of Gower’s
distance as the similarity measure enables the application of
the novel active learning strategy to any dataset.

The suggested expression to calculate the representativeness
of each instance is as follows:

d = argmin
x

(
1

L

L∑
n=1

dist(x, xn)

)β

(2)

L - Size of the labeled dataset including recent data
β - Weight parameter

Our goal is to select instances that provide valuable in-
formation to the model and to represent the overall dataset.
Combining equations 3.1 and 3.2, equation 3.3 can be ob-
tained. Equation 3.3 is formulated in a way such that it
will try to pinpoint instances where the model exhibits the
least confidence (highest vote entropy or highest information)
and simultaneously try to select instances most representative
of the entire data set (lowest distance measure). Therefore
this strategy generates a statistic that jointly consider both
informativeness and representativeness where a higher value
for the statistic imply high value of that particular label to the
model.

xDWQBC = argmax
x

[
−
∑
i

V (yi)

C
log

(
V (yi)

C

)]

−

argmin
x

(
1

L

L∑
n=1

dist(x, xn)

)β
 (3)

where β > 0 , using the result in Appendix A, The de-
rived expression for density-based query by committee active
learning strategy is as follows:

xDWQBC = argmax
x

[
−
∑
i

V (yi)

C
log

(
V (yi)

C

)]

−

(
1

L

L∑
n=1

dist(x, xn)

)β (4)

If the calculated xDWQBC is greater than the threshold, the
actual label for the corresponding instance will be queried;
otherwise, it will be discarded. If we look at the equation
3.4 closely, we can see that the primary concept behind
the developed query strategy involves modifying the QBC
algorithm by introducing a penalty for the loss function,
precisely, the vote entropy, based on a centrality measure. This
modification aims to discourage the selection of data points
distant from most of the dataset under the assumption that
such points may be outliers. The rationale is that querying the
actual label of an outlier is unlikely to enhance the model’s
accuracy significantly.

While outliers might provide valuable information, in our
approach, a parameter, denoted as β, is employed to balance
the weight between the representative measure and the vote
entropy (informativeness). This strategic use of β ensures that
we can balance between informativeness and representative-
ness of data points depending on the requirements (β is a
tune-able parameter).

The model’s training is done similarly to the existing active
learning query strategies, where the classifier is initialized with
a small subset of the data. Then, the actual label will be queried
depending on the decision rule. Algorithm 1 depicts the most
basic form of the developed query strategy, the where we query
the data if the calculated xDWQBC value is greater than a
certain threshold.

Algorithm 1 Density-Based Query-By-Committee for Stream-
ing Data - Fixed Strategy

Require: Xt – Incoming instance, θ - Threshold, W - Win-
dow Size, β - Density parameter, C - Committee

Ensure: Whether to request the actual label or not {true,
false}

1: Initialize classifier L
2: for each Xt in incoming instance do
3: Calculate

Tt = argmax
x

(∑
i

(
V (yi)

C

)
log

(
V (yi)

C

)

−

(
1

L

L∑
n=1

dist(x, xL)

)β


4: if Tt > θ then
5: Request the true label yt of instance Xt

6: Train classifier L with (Xt, yt)
7: end if
8: end for

A. Variable Threshold Strategy
Distributing the labeling workload over time is one of the

most complex aspects of using active learning query strategies
with streaming data. When a fixed threshold is employed,
the classifier may exhaust the labeling budget or reach the
threshold certainty after some time. In the case of a fixed
threshold, it prematurely terminates the learning process and
cannot adapt to future changes.
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The concept behind the variable threshold strategy is to use
a decision criterion with a value that can vary across the data
stream. To achieve this, it is suggested to label the cases that
exhibit the lowest confidence within a specific time frame. As
a result, the threshold is adjusted to fluctuate based on the
incoming data from the stream, allowing for efficient budget
utilization. If a classifier becomes more stable, the we will
have a larger threshold that will not query even the most
uncertain cases. Conversely, in the event of changes in data
distribution (concept drift), which may lead to an increased
need for labeling, the threshold is narrowed to selectively
query the most informative cases instead of labeling all cases.

This variable threshold strategy is designed so that more
labels are requested when the learner lacks confidence, and
fewer labels are needed when conditions are stable. The
dynamic threshold ensures a consistent number of labels are
requested, providing control over the labeling budget through-
out the data stream. The underlying concept of the variable
threshold strategy is presented in Algorithm 2.

Algorithm 2 Density-Based Query-By-Committee for Stream-
ing Data - Variable Threshold Strategy

Require: Xt – Incoming instances, B – Labeling budget, s
– Adjusting step, P – Labeling cost per observation

Ensure: Whether to request the actual label or not {true,
false}

1: Initialize total labeling cost C = 0
2: if C < B then
3: Calculate

Tt = argmax
x

(∑
i

(
V (yi)

C

)
log

(
V (yi)

C

)

−

(
1

L

L∑
n=1

dist(x, xL)

)β


4: if T < θ then
5: Increase labeling cost: C = C + P
6: Narrow the threshold: θ = θ(1− s)
7: else
8: Widen the threshold: θ = θ(1 + s)
9: end if

10: else
11: return false
12: end if

B. Randomized Variable Threshold Strategy

In some situations, concept drift may occur in input data
as well as in labels. If concept drift occurs in labels, the
classifier cannot notice it without labels. So, to capture such
changes in the data, cases about which the classifier is very
confident are queried from time to time. This is done by
multiplying the labeling threshold by a random variable with
a normal distribution following N (1, δ) and computing a new
threshold. Remaining implementation is similar to that of
variable threshold strategy. Algorithm 3 illustrates how the

randomized variable threshold variant is implemented for the
newly developed query strategy.

Algorithm 3 Density-Based Query-By-Committee for Stream-
ing Data - Randomized Variable Threshold Strategy

Require: Xt – Incoming instances, B – Labeling budget, s
– Adjusting step, P – Labeling cost per observation, δ –
Randomization Threshold

Ensure: Whether to request the actual label or not {true,
false}

1: Initialize total labeling cost C = 0
2: if C < B then
3: Calculate

Tt = argmax
x

(∑
i

(
V (yi)

C

)
log

(
V (yi)

C

)

−

(
1

L

L∑
n=1

dist(x, xL)

)β


4: Compute randomized threshold: θrandomized = θ × δ
5: if T < θrandomized then
6: Increase labeling cost: C = C + P
7: Narrow the threshold: θ = θ(1− s)
8: else
9: Widen the threshold: θ = θ(1 + s)

10: end if
11: else
12: return false
13: end if

IV. ANALYSIS

The datasets used in this analysis were obtained from
an online repository containing various benchmark streaming
datasets. All of these datasets have been previously utilized
in the literature on streaming settings. The available datasets
include binary classification, multiclass classification, datasets
with concept drift, datasets without concept drift, and imbal-
anced datasets.

A. Description of the datasets

The datasets used in this analysis are not novel; instead,
they have been extensively employed in previous studies on
streaming machine learning. Their prior usage in research pro-
vides a rich background of information, enhancing the validity
of our findings and facilitating more relevant interpretations.
Consequently, our study not only contributes to the existing
knowledge associated with each dataset but also advances the
broader field of streaming machine learning. The drift status
of the datasets was determined based on the results presented
in Appendix B.

This study investigated two main approaches for detecting
drift in data. The first set of techniques focused solely on
the distribution of the input data (x). These included methods
like the Hoeffding Drift Detection Method Average (HDDA)
and Moving Average (HDDM) [23]. However, these methods
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yielded significantly different results compared to the Adaptive
Window Technique (ADWIN) and the Drift Detection Method
(DDM). This discrepancy suggests that relying solely on the
input distribution might only detect superficial changes in the
data, is referred to as ”virtual drift.” This could lead to inaccu-
rate conclusions about the underlying trends. To overcome this
limitation and identify true changes in the data (”real drift”),
techniques that analyze posterior probabilities were necessary.
Therefore, the well-established ADWIN algorithm [24] was
employed for accurate drift detection.

TABLE I: Dataset Information

Dataset Instances Attributes Labels Drift Status

Sea stream ([25]) 40,000 4 (1+3) 2 No-Drift
Timestamp Iris ([26]) 300 5 (1+4) 3 No-Drift
Electricity ([27]) 45,312 8 (1+7) 2 Drift
Airlines ([25]) 539,383 7 (5+2) 2 Drift
Cover Type ([28]) 581,012 54 (44+10) 7 Serious Drift
Hyperplane Fast ([25]) 10000 11 (1+10) 2 Serious Drift

B. Experimental Design

1) Description: The primary objective of the experiment is
to compare the performance of newly proposed active learning
query strategies with existing strategies. The experimental
setup involves evaluating the performance of the active learn-
ing query strategy along with its variants on the datasets stated
in Table 1.

The performance of each strategy will be evaluated using
two machine learning techniques for streaming data: the Ho-
effding tree and the Naive Bayes algorithm. These choices are
supported by literature, which highlights the efficiency of the
Hoeffding tree classifier in stream data classification due to
its time-saving nature and superior attribute comparison capa-
bilities [29]. Similarly, the Naive Bayes algorithm is favored
for its simplicity, low computational cost, and incremental
learning capabilities, despite assuming attribute independence
[13]. This study primarily focuses on utilizing these algorithms
during the experimental setup.

2) Active Learning Performance Strategy: The evaluation
covers a wide range of scenarios, including comparisons
with a baseline model (random sampling) and a model that
incorporates all labeled data (Conventional Streaming Machine
Learning model). When assessing the effectiveness of an active
learning query strategy against the random model, the study
does not merely compare overall accuracy. It emphasizes that
for an active learning model to be considered effective, its
performance must consistently outperform the random model
throughout the data stream. This is important due to the
additional computational cost associated with active learning
strategies compared to randomly sampling instances from the
stream. Therefore, active learning model must consistently
outperform random sampling, aligning with the ultimate goal
of developing a more accurate model while controlling the
labeling budget. As per the evaluation technique, prequential
evaluation [30] was the chosen method for performance as-
sessment.

3) Parameter Settings: The performance of these active
learning query strategies will be evaluated using default pa-
rameters s = 0.01 and δ = 1, as [13] utilized in their
uncertainty sampling study. Furthermore, [12] suggested that
labeling 20% of the total stream is sufficient to achieve an
accuracy similar to the fully supervised approach. This insight
guided the setting of our labeling budget to 20% of the total
stream for all active learning query strategies, where such
control was feasible.

In addition, parameter β was set using a parameter grid,
which ranges from [0, 2]. For fixed threshold strategy, θ was
set using a parameter tuning and the best performing θ value
was selected when training the final model. For randomized
and variable randomized θ was initialized with 1 and the
threshold is set in a way that it will change depending on
the sampling rate.

4) Additional Information: To evaluate vote entropy in
QBC, a committee of models is necessary. Settles (2008) [8]
suggests that even a committee of three models can effectively
perform in batch data scenarios. Thus, a committee size of
three was employed in the experimental study. Additionally,
ensemble methods tend to perform well in committees [31].
The committee consisted of the Adaptive Random Forest,
Ensemble Bagging Classifier, and Ensemble Leverage Bagging
Classifier. Furthermore, the models within the committee were
updated simultaneously with the true labels queried from
the stream. The analysis was conducted using open-source
Python libraries, specifically designed for data streams in
online environments, such as river ml and scikit-multiflow.”

V. RESULTS

The experimental results under the three circumstances, the
absence of concept drift, the presence of concept drift, and the
presence of severe concept drift, are as follows.

A. Absence of Concept Drift

When examining the sea stream and the time stamp iris
datasets, it was determined that neither exhibited signs of
concept drift. Figures 2-5 showcase the comparative accuracies
of the density-based QBC (DWQBC) strategies and how
they fare against two baseline models (random model and
all data model). This indicates that the DWQBC variants
consistently outperformed the random model and in some
instances (Figures 2 and 4) even the model with fully labeled
data. This reaffirms the results of previous studies where active
learning models outperform models with all the data, and such
observations are prevalent in batch data, where active learning
eliminates the effects of over-fitting, as indicated by [31].

B. Presence of Concept Drift

In situations where concept drift is prevalent, the widely
used active learning query strategies tend to underperform
when paired with the Hoeffding tree model. This limitation be-
comes particularly evident when evaluating their performance
on two benchmark datasets: the ’electricity’ and the ’airlines’
datasets as observed in Appendix D. Figures 6 and 7 depict
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Fig. 2: Density weighted QBC for sea stream dataset - HT

Fig. 3: Density weighted QBC for time stamp iris dataset - HT

Fig. 4: Density weighted QBC for sea stream dataset - NB

Fig. 5: Density weighted QBC for time stamp iris dataset - NB

the performance of DWQBC sampling and its variants with
the Hoeffding tree model on both the electricity dataset and
the airlines dataset. These figures highlight the effectiveness
of the DWQBC query strategy in comparison to random
querying. The same observation is evident in Figures 8 and
9 when using the Naive Bayes classifier. The DWQBC query

Fig. 6: Density weighted QBC for electricity dataset - HT

Fig. 7: Density weighted QBC for airlines dataset - HT

Fig. 8: Density weighted QBC for electricity dataset - NB

Fig. 9: Density weighted QBC for airlines dataset - NB

strategy consistently produces a better performance than the
random model. Additionally, the variable threshold strategy
and the randomized variable threshold strategy, show signifi-
cant efficacy compared to the fixed threshold strategy. These
techniques demonstrate commendable performance even when
only 20% of the complete data stream is labeled.
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Fig. 10: Uncertainty sampling for cover type dataset - HT

Fig. 11: QBC query strategy for cover type dataset - HT

C. Presence of Serious Concept Drift

Many classification tasks in practical, real-world scenarios
deal with challenges such as multiclass categorization, class
imbalance, and significant concept drifts. Recognizing these
complexities, we aimed to evaluate the efficacy of the newly
devised DWQBC query strategy, especially in a streaming
setting that mirrors these challenges. For this context, we
selected two datasets with severe concept drift (as shown in
Appendix B): the hyperplane dataset and the well-established
Forest Cover dataset.

In Figures 10 and 11, we can see the inadequacies of
the two most commonly employed active learning query
strategies for streaming data, Uncertainty Sampling and QBC
(we implement these methods with different thresholds as in
[13]). It is evident that these methods under-perform even
when compared with the basic random strategy.

Figure 12, a pivotal outcome from the analysis, illustrates
the better performance of the DWQBC variants in comparison
to the Random model. This result is further supported by the
results presented in Figures 13 and 14 which showcase the
better performance of DWQBC variants over random model in
the Hyperplane dataset. However, we noted that DWQBC does
not perform as well as the model with all data in this scenario.
This is an expected result as it would be impossible to capture
all the patterns in a data stream that changes constantly with
only limited instances.

VI. DISCUSSION

The learning curves in the results section show varying
initial stages of learning. Some graphs start from the same
point, while others do not. This variation arises from using a

Fig. 12: Density-based QBC for cover type dataset - HT

Fig. 13: Density Based QBC query strategy for Hyperplane dataset
- HT

Fig. 14: Density-based QBC for Hyperplane type dataset - HT

percentage of the entire stream for model initialization, with
the initial 2% serving as the initial set. The number of entries
used for training varies across datasets. On the other hand,
accuracy for the plots is computed for batches of 5% of the
entire training set. Due to this, we can expect differences in
the initial stages of the plots. However, this observation has
no impact on the long-term performance, which is our main
concern.

In the analysis, it was observed that the two most widely
used active learning query strategies (uncertainty sampling and
QBC) for streaming data performed well only in the absence
of concept drift. Notably, both of these strategies showed
poor performance when confronted with severe concept drift.
On the other hand, our newly proposed strategy DWQBC
demonstrated effectiveness in the presence of both regular
concept drift and severe concept drift as well as in the absence
of concept drift. The tables below present the mean accuracy of
the fitted models across different datasets using the Hoeffding
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tree model.
The average accuracy of the active learning query strategy

fitted with the Hoeffding tree model is summarized in Tables
2,3 and 4, classified according to the three scenarios consid-
ered in the study. Notably, the accuracy columns of the datasets
in the presence of concept drift highlight the limitations of
the widely used active learning query strategies in handling
concept drift. The findings on the benchmark datasets suggest
that the newly developed DWQBC query strategy consistently
outperforms other query strategies with respect to average
accuracy in all considered scenarios.

Furthermore, our results align with the findings of [13],
that identified that uncertainty sampling with randomized and
variable thresholds outperforms uncertainty sampling with
fixed thresholds in the presence of concept drift. A similar
observation is evident from our results as well, where ran-
domized and variable threshold query strategies perform better
than fixed threshold query strategies in the presence of concept
drift.

TABLE II: Performance of Various Models on Sea and Time
Stamp Iris Datasets for Hoeffding tree model (Absence of

Concept Drift)

Model Sea Dataset Time Stamp Iris Dataset
Model with all data 0.87903 0.87074
Random model 0.86770 0.76459
Fixed uncertainty 0.80839 0.83944
Variable uncertainty 0.87126 0.85405
Randomized uncertainty 0.88182 0.85548
Fixed QBC 0.87496 0.89000
Variable QBC 0.88148 0.65658
Randomized QBC 0.88218 0.79356
Fixed DBQBC 0.88865 0.88017
Variable DBQBC 0.88410 0.89496
Randomized DBQBC 0.88930 0.88615

TABLE III: Performance of Various Models on Electricity,
Airline, and Cover-Type Datasets for Hoeffding Tree Model
(Presence of Concept Drift)

Model Electricity Dataset Airline Dataset
Model with all data 0.79848 0.64421
Random model 0.76931 0.59016
Fixed uncertainty 0.76582 0.60847
Variable uncertainty 0.77701 0.63943
Randomized uncertainty 0.77952 0.64960
Fixed QBC 0.77372 0.65532
Variable QBC 0.76831 0.65177
Randomized QBC 0.79106 0.65741
Fixed DBQBC 0.80550 0.65780
Variable DBQBC 0.78886 0.64563
Randomized DBQBC 0.78487 0.65564

Uncertainty sampling demonstrated good performance when
compared to other strategies in the absence of concept drift.
However, its effectiveness diminished in the presence of
concept drift. Surprisingly, uncertainty sampling even with
variable and randomized thresholds which are designed to
detect changes in data distribution under-performed. In con-
trast, the QBC strategy outperformed uncertainty sampling.
This is because QBC leverages a set of posterior probabilities
from multiple models rather than relying on a single model,
gathering more information about each instance to assess its
informativeness.

TABLE IV: Performance of Various Models on Cover-Type
and Hyperplane Datasets for Hoeffding Tree Model (Presence
of Serious Concept Drift)

Model CoverType Dataset Hyperplane Dataset
Model with all data 0.79848 0.51301
Random model 0.76931 0.42369
Fixed uncertainty 0.76582 0.30452
Variable uncertainty 0.77701 0.40005
Randomized uncertainty 0.77952 0.41486
Fixed QBC 0.77372 0.39579
Variable QBC 0.76831 0.41574
Randomized QBC 0.79106 0.42000
Fixed DBQBC 0.78487 0.37418
Variable DBQBC 0.78886 0.47901
Randomized DBQBC 0.80550 0.49634

The DWQBC which uses both representativeness and in-
formativeness of an instance before querying its original label
performed better than the strategies that consumed only the
informativeness measure. This emphasizes the idea that the
performance of active learning query strategies is not solely
influenced by the amount of information taken into account
when evaluating instance to query. Hence, one can argue that
representativeness is also crucial when determining whether
the true label of an instance should be queried.

VII. CONCLUSION

Strategies that incorporate more information by considering
both representativeness and informativeness generally outper-
form those that use less information. Based on the results ob-
tained, it is evident that in the presence of severe concept drift,
the randomized DWQBC strategy outperforms the other two
variants of DWQBC. The reasoning behind this is that when
significant concept drift occurs, the data distribution changes
rapidly, and strategies with fixed or variable thresholds cannot
effectively capture these changes. However, the randomized
DWQBC strategy, which involves random labeling, includes
the drifted data in the labeled set. Since this labeled set is
used to compute the representativeness measure, the drifted
data is not dismissed as outliers.
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[13] I. Žliobaite, A. Bifet, B. Pfahringer, and G. Holmes, “Active learning
with evolving streaming data,” in Machine Learning and Knowledge
Discovery in Databases, 2011, pp. 587–612.

[14] E. Lughofer, “Single-pass active learning with conflict and ignorance,”
Evolving Systems, pp. 251–271, 2012.

[15] E. Lughofer and M. Pratama, “Online active learning in data stream
regression using uncertainty sampling based on evolving generalized
fuzzy models,” IEEE Transactions on Fuzzy Systems, pp. 292–309, 2018.

[16] M. Pratama, S. G. Anavatti, and J. Lu, “Active learning using pre-
clustering,” IEEE Transactions on Fuzzy Systems, vol. 23, no. 6, pp.
2048–2066, 2015.

[17] S. Mohamad, “Active learning for data streams.” Ph.D. dissertation,
Bournemouth University, 2017.

[18] D. Cacciarelli and M. Kulahci, “Active learning for data streams: a
survey,” Machine Learning, vol. 113, pp. 185–239, 2024.

[19] Z. Zhang, E. Strubell, and E. Hovy, “A survey of active learning
for natural language processing,” 2023. [Online]. Available: https:
//arxiv.org/abs/2210.10109

[20] A. Tharwat and W. Schenck, “A survey on active learning: State-
of-the-art, practical challenges and research directions,” Mathematics,
vol. 11, no. 4, p. 820, 2023. [Online]. Available: https://doi.org/10.
3390/math11040820

[21] M. Datar and S. Muthukrishnan, “Estimating rarity and similarity over
data stream windows,” 2005.

[22] J. C. Gower, “A general coefficient of similarity and some of its
properties,” Biometrics, vol. 27, no. 4, 1971.

[23] S. Putatunda, Practical Machine Learning for Streaming Data with
Python: Design, Develop, and Validate Online Learning Models.
Apress, 2021.
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APPENDIX

A. Appendix A: Proof for Equation (3.4)

Data:
Let f : D → R. There exists a such that f(a) ≥ f(x) for

all x ∈ D. Also, b ∈ D exists such that f(b) ≤ f(x) for all
x ∈ D.

Need to prove:
For all x 1, x 2 ∈ D, we have f(x) − f(b) ≥ f(x 1) −

f(x 2).
Proof:
Let x 1 ∈ D. We have f(a) ≥ f(x 1) from the first

equation.
Let x2 ∈ D. From the second equation, we have −f(b) ≥

f(x2) for all x2 ∈ D.
By adding the first equation to the second equation, we get:

f(x1)− f(x2) ≤ f(a)− f(b) for all x ∈ D.

This proves that for all x1, x2 ∈ D, we have f(x) − f(b) ≥
f(x1)− f(x2).

B. Appendix B

The results of the carried-out drift detection tests are as
follows. Once a drift is detected, it will be plotted as a red
line in the plot.

Fig. 15: Drift Detection Plot for Sea Stream Dataset

Fig. 16: Drift Detection Plot for electricity Dataset

May 2025 International Journal on Advances in ICT for Emerging Regions

https://doi.org/10.1016/j.artmed.2020.101805
https://arxiv.org/abs/2210.10109
https://arxiv.org/abs/2210.10109
https://doi.org/10.3390/math11040820
https://doi.org/10.3390/math11040820


75 S.M.A Prabashwara, O. Seneweera, G. Dharmarathne

Fig. 17: Drift Detection Plot for Airlines Dataset

Fig. 18: Drift Detection Plot for Cover Type Dataset

Fig. 19: Drift Detection Plot for Time stamp Iris Dataset

Fig. 20: Drift Detection Plot for hyper f Dataset

C. Appendix C

The equation for the developed density-based uncertainty
active learning query strategy for streaming data utilizing
Gower’s distance along with margin sampling is as follows.

For Binary classification:
xDWU = argminx [Pθ(ŷ1|Xt)− Pθ(ŷ2|Xt)] ×(
1
L

∑L
n=1 dist(x, x(L))

)β
For Multiclass classification (Uses cross entropy):
xDWU = argminx [−

∑
i Pθ(yi|Xt) log (Pθ(yi|Xt))] ×(

1
L

∑L
n=1 dist(x, x(L))

)β
Pθ(yi | x) : Probability of yi givenx and parameterized by θ,

θ : Threshold parameter,
L : Window size,
β : Density parameter.

D. Appendix D

This section presents the results obtained for the density-
based uncertainty query strategy using the same data sets
analyzed above.

Fig. 21: Density-based uncertainty query strategy for sea stream
dataset- HT

Fig. 22: Density-based uncertainty query strategy for time stamp iris
dataset- HT
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Fig. 23: Density-based uncertainty query strategy for sea stream
dataset- NB

Fig. 24: Density-based uncertainty query strategy for electricity
dataset- HT
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