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Unraveling the Cognitive Secrets of Chess Experts:
Investigating Dynamic Functional Brain
Connectivity through rs-fMRI Analysis
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Abstract—This study investigates the dynamic functional con-
nectivity (DFC) in resting-state fMRI (rs-fMRI) data of chess 
players using a Vector Auto-Regression (VAR) model. The VAR 
model was constructed using the Group Lasso and Sliding 
Window technique. The study included 116 brain regions, and 
their correlation was examined in the context of their dynamic 
connection. Statistical feature selection techniques were used 
to determine which dynamic connections of brain areas were 
crucial in discriminating chess masters from novice players. 
After identifying key DFCs related to these brain regions, a 
classification model was built to classify chess experts and normal 
control individuals.

Our classification m odel a chieved a n a ccuracy o f 96.33%
under a 10-fold cross-validation framework. This performance 
represents a substantial improvement over previous studies uti-
lizing only rs-fMRI data, which reported a maximum accuracy of 
85.45%, indicating a 10.88% enhancement in accuracy. Moreover, 
our model outperformed methods that combined rs-fMRI with 
T1-weighted MRI data, which achieved an accuracy of 88%, 
yielding an additional 8.33% improvement. These results demon-
strate that our approach, relying solely on rs-fMRI data, offers 
a notable advancement in the classification o f c hess expertise.

Index Terms—Dynamic Functional Connectivity, Vector Auto-
Regression, resting-state fMRI, Chess Masters and Novices, 
Classification

I. INTRODUCTION

Brain network analysis is an exciting subject in human
connectome projects whose goal is to create a network map
that solves the anatomical and functional connectivity within
the healthy human brain along with producing a body of data
that clears the way for researching brain disorders [1]. The
most often used imaging modalities to investigate functional
and structural connection patterns of brain areas are fMRI
(functional magnetic resonance imaging) and DTI (diffusion
tensor imaging). Diffusion imaging aids in the identification
of structural connections between brain regions, while func-
tional magnetic resonance imaging (fMRI) involves functional
interactions between brain regions at macroscopic scales. The
fMRI infers brain activity by indirectly monitoring variations
in blood flow. Resting-state fMRI (rs-fMRI), a sub-modality of
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fMRI, is a valuable technique for analyzing regional interac-
tions that occur within the brain while a subject is not doing
an explicit task. In both rs-fMRI and task-based fMRI, the
output depends on past and current conditions, representing
a causal system. The Granger Causality model was used to
model the impact of previous tasks on distinct brain areas [2],
[3]. The application of rs-fMRI in the research and clinical
setting has been growing for the past 2 decades. The resting-
state functional connectivity technique has been applied for
different mental disorders such as the detection of Autism,
Schizophrenia, and Alzheimer’s disease, etc. An accurate rs-
fMRI classification model will help to provide diagnostic and
prognostic information for the above applications.

A. Summary of Our Contributions

• A comprehensive literature review of the most recent
techniques for analyzing rs-fMRI data was conducted.

• The application of vector auto-regression for detecting
dynamic functional connectivity (DFC) in experimental
rs-fMRI data was investigated, and various correlation
metrics were compared.

• A classification model was developed to differentiate rs-
fMRI data based on their DFC patterns.

• The effectiveness of the proposed method was evaluated
by classifying rs-fMRI scans of chess experts and control
individuals.

B. Background and motivation

Resting-state fMRI (rs-fMRI), a sub-modality of fMRI, is
a valuable technique for analyzing regional interactions that
occur within the brain while a subject is not doing an explicit
task. Since there is no task, rs-fMRI is going to be attractive
to patients who may struggle with task instructions, such as
those with neurologic, neurosurgical, or psychiatric disorders,
as well as children [4]. Thus, during the past two decades, the
use of rs-fMRI in research and clinical settings has increased.
The resting-state functional connectivity technique has been
applied for different mental disorders such as the detection of
Autism, Schizophrenia, and Alzheimer’s disease, etc.

Brain scan rs-fMRI results can also be interpreted as causal
signals. When no external stimulus (task) is applied during
the resting state, activation of brain areas is thought to be
steady [5]. The existence and dominance of several types
of mental activity during the resting state were identified
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in [6]. Resting-state patterns of correlated brain activity have
been demonstrated in numerous studies to be constant across
subjects and diagnostic of disease states when abnormal [7].
rsfMRI may be thought of as a dynamic imaging modality that
monitors brain activity across time. However, the frequently
used methods for analyzing rs-fMRI signals are based on the
examination of complete time series [8]. This method, on the
other hand, fails to observe inter-region connections and might
miss subtle patterns that might be useful in distinguishing
functionally different networks. DFC (dynamic functional con-
nectivity) describes the functional interaction between brain
areas and the changes that occur over time [9]. One of the
most commonly used methods for detecting DFC is the sliding
window technique, which divides the signal into overlapping
subsamples [10].

However, the challenge of identifying change points in
the signal in order to establish an optimal window size has
proven to be difficult. The majority of approaches take an
experimental approach, in which window size is chosen based
on the best result [11], [12]. Identifying change points in the
signal to produce windows of similar width from the rs-fMRI
data has been a challenge. After identifying change points
in the signal, a novel approach for learning, discriminating
features (connections), and generating functional connectivity
networks is also required. The identified features with dynamic
functional connectivity can then be used to create a classifi-
cation model for classifying rs-fMRI data.

II. RELATED WORK

Dynamic functional connectivity (DFC) or its network
analog, dynamic functional network connectivity (DFNC),
refers to the connectivity between pairs of brain regions (or
networks) within sub-intervals of time series, as opposed to
conventional static functional connectivity (SFC), which is
derived from the correlation within an entire time series [13].
Indeed, DFC research shows that cognitive impairments and
clinical symptoms associated with many mental illnesses are
dependent not just on the degree of connectivity between brain
areas, but also on how that connectivity varies over time [13],
[14]. In [15], a comprehensive comparison of several cor-
relation metrics was carried out. They demonstrated that
Mutual Information (MI) and Variation of Information (VI)
metrics produced the most consistent findings by attaining high
reliability with regard to DFC estimations for various window
widths using test-retest datasets. On the basis of resting-
state functional MRI data, a variational inference method to
a Bayesian multi-subject vector autoregressive (VAR) model
for inference on effective brain connectivity was presented in
[16], [17].

An experiment revealed a transitory and selective structural
alteration in brain areas related to the processing and storage of
complex visual motion [18]. In response to external demands,
their findings suggest that the structure of the mature human
brain changes.

Long-term learning skills and activity repetition can re-
sult in significant anatomical and functional changes in the
brain [19]. To identify the neurological basis of long-term

professional chess training, the changed functional couplings
of Visual motion area (MT) subregions in rs-fMRI data of
chess players were analyzed using resting-state functional
connectivity (RSFC) and Granger causality analysis (GCA).
They discovered that long-term professional chess training
might change the functioning of the MT region [20].

Resting-state functional connectivity and graph-theoretical
studies were used to analyze the overall architecture of brain
functional networks in chess players. The results show an
increase in functional connectivity between the hippocampus,
thalamus, basal ganglia, and many parietal and temporal
regions in chess masters. These results reveals a link between
brain network functional architecture and the subjective nature
of cognitive expertise, which might give more insight into the
processes underlying expert behavior [21].

Spatial independent component analysis (sICA) has been
used to examine dynamic connectivity parameters in rs-fMRI
data from chess players [22]. Four meta-state dynamic fluidity
indices were investigated using sliding window correlation and
meta-state approaches. According to the findings, Professional
chess players demonstrated increased dynamic fluidity and
dynamic range, as well as increased travel between successive
meta-states.

The voxel-wise changes of functional connectivity patterns
have been identified in rs-fMRI data from chess players
[20]. The alteration of corresponding functional couplings was
analyzed using Seed-based functional connectivity analysis.
According to the findings, there were fewer functional con-
nections between the precentral gyrus and the primary visual
cortex (V1) in chess players. Additionally, a classification
model based on support vector machines (SVM) distinguished
between experienced players and beginners with an accuracy
of 85.45%.

In order to classify professional and amateur chess players,
a novel method for combining metrics from anatomical and
functional brain images was presented [23]. Chess players’
functional connectivity (FC) and morphometric connectivity
(MC) were estimated using rs-fMRI data and T1-weighted
MRI data, respectively. As a result, the machine learning-based
model achieved a classification accuracy of 88%, demon-
strating an improvement over the conventional functional
connectivity-based approach where the accuracy was 76.33%.

III. METHOD

A. Dataset

The Chess Masters and Novices (CM&N) dataset was
used to evaluate the effectiveness of our proposed tech-
nique. Previous studies have shown that long-term learning
and repeated practice can lead to substantial anatomical and
functional changes in the brain. Specifically, they have found
that extended professional chess training may enhance func-
tional connectivity across multiple brain regions. Resting-state
functional magnetic resonance imaging (rs-fMRI) provides
a valuable tool for assessing changes in intrinsic functional
connections and interactions within the brains of chess players.
The dataset contained a multi-modal rs-fMRI data of 27
professional Chinese chess players, the majority of whom
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are chess grand masters and masters (CM/Ms), as well as
27 chess beginners whose age and gender well-matched. Our
goal is to classify Chess Masters and Novices (CM&N) testing
individuals as either professional or novice chess players. The
rs-fMRI row scans were transformed into time series data,
which indicated the changes in 116 brain regions over time
(200s).

Fig. 1: rs-fMRI Row Data Transformation

• Region of interest (ROI) = 116
• n time points = 200s
• All number of subjects = 54
• Chess masters: 27
• Chess novices: 27

B. Stride and Window Length Selection with Vector Auto-
Regression (VAR)

Using the VAR approach, the window size k and stride s
are selected. The order of the VAR processes is determined by
the window size. Ten participants were randomly chosen from
the Chess Masters and Novices dataset while guaranteeing
representation from both master and novice classes in order
to define the order of the VAR processes. The regularization
parameter λ was set to 0.1, and errors were computed for
various window lengths and strides to predict the regression
order using Lasso, The experiment considered 610 combina-
tions of window length and stride in order to determine the
best combination of window length and stride. The window
length k ranges from 60 to 120, while the stride s ranges
from 1 to 10. The relative prediction errors from all window
length and stride combinations are recorded, and the threshold
of 0.02 is utilized to determine the best pair. Please refer to
the following figure for an explanation of stride and window
length selection process.

Fig. 2: Stride and Window Length Selection Process

C. Feature Generation and Selection

After determining the optimal combination of window
length and stride, a sliding window of the chosen length was

applied to the rs-fMRI signal, advancing by the selected stride.
The process resulted in r total blocks when the sliding window
traversed the entire signal. The value of r is calculated using
the following equation,

r =
(T − k)

s
+ 1

Where:
• T = 200 is the total number of time points in the rs-fMRI

data.
• k is the selected window length for the sliding window.
• s is the selected stride for the sliding window.
Afterward, a correlation matrix was generated for each

block, and the average of all these correlation matrices was
computed, resulting in a single correlation matrix for each
subject. The precision matrices were then calculated for the
averaged correlation matrices of all subjects. From each pre-
cision matrix, the upper triangular entries were extracted and
vectorized into a vector containing 6,676 entries, giving each
subject a unique vector. The final dataset was constructed with
subjects as rows and the 6,676 vector entries as columns. This
presented a high-dimensionality challenge, as the number of
features exceeded the number of subjects. To mitigate this is-
sue, feature selection and dimensionality reduction techniques
were employed.

In this study, dimensionality reduction was performed using
the Wilcoxon Rank Sum (WRS) test, Mutual Information
(MI), and Principal Component Analysis (PCA). By adjusting
parameters (such as the p-value in the WRS test), altering al-
gorithm structures, and combining different approaches, these
three methods yielded nine distinct feature selection strategies.
These strategies effectively reduced the original 6,676 features
to a much smaller subset. For a detailed explanation of the
feature generation and selection process, please refer to the
following figure.

Fig. 3: Feature Generation and Selection Process

International Journal on Advances in ICT for Emerging Regions May 2025



Unraveling the Cognitive Secrets of Chess Experts: Investigating Dynamic Functional Brain Connectivity through rs-fMRI Analysis 80

D. Classification

The objective of this classification task was to distinguish
between chess masters and novices using the CM&N dataset.
In total, eight machine learning algorithms and one deep
learning algorithm were tested. Hyperparameter tuning was
conducted alongside model training to identify the optimal
parameters. Ultimately, 11 learning models were developed,
consisting of nine individual models and two ensemble mod-
els, where the latter combined the best-performing models that
achieved over 90% accuracy. Following the feature selection
process, nine distinct feature sets were available. Each of these
feature sets was used to train the nine individual learning
models. The top-performing models and feature selections
were then combined to form the ensemble models. Detailed
descriptions of all 11 learning models are provided in the
following table.

TABLE I: Learning Models Description

Model Model Description
Model 1 Support Vector Machine (SVM)
Model 2 Extreme Gradient Boosting (XGBoost)
Model 3 Logistics Regression (LR)
Model 4 Light Gradient Boosting Machine (LightGBM)
Model 5 Multilayer Layer Perceptron (MLP)
Model 6 Extremely Randomized Trees (ExtraTrees)
Model 7 Random Forest (RF)
Model 8 Adaptive Boosting (AdaBoost)
Model 9 Category Boosting (CatBoost)

Model 10 The ensemble model of Model 1 + Model 3
Model 11 The ensemble model of Model 3 + Model 9

E. Evaluation

Before applying a classification model to real-world data, it
is essential to evaluate its performance. Performance metrics
such as accuracy, precision, recall, and F1-score are com-
monly used to assess how well the models perform. In this
study, model evaluation was conducted using 10-fold cross-
validation. For each combination of learning model and feature
selection, the average values of accuracy, precision, recall, and
F1-score were recorded, along with their standard deviations
(SD).

IV. RESULTS

A. Stride and Window Length Selection

The heatmap of prediction errors for various window lengths
and strides is displayed in the figure below. The window length
varies from 60 to 120, and the stride ranges from 1 to 10. The
range of errors that each block of the heatmap follows can be
determined using the bottom color bar. If the block is darker,
it indicates that the error is minor. If the block is lighter, it
indicates that the error is considerable. In addition, there were
some special hues in the color bar that allowed us to identify
specific error points. The objective, however, is to determine
which block has the least error. According to the heatmap, the
blocks with stride 1 appear to be darker than the other blocks.
Then stride 1 might be considered the best stride.

The number of pairs under various error thresholds is shown
in the table below. There are three thresholds: 0.1, 0.05, and

Fig. 4: Heatmap of Prediction Errors

0.02. If 0.02 is chosen as the threshold, there will be 61
potential window length and stride pairs.

TABLE II: Number of Pairs under Error Thresholds

Threshold Number of pairs
0.1 410
0.05 182
0.02 61

Upon thorough examination, all 61 potential pairs were
found within stride 1. As a result, stride 1 is confirmed
to be the optimal stride. The following line plot represents
the variation of the prediction error under different window
lengths with the selected optimal stride length 1. Using the
line plot, it is simple to see that the window length with the
least error is 64. The precise error of window length 64 with
stride 1 was 0.011556.

Fig. 5: Deviation of Errors under Window Lengths with Stride
1

Using the preceding results, 1 and 64 can be selected as the
optimal stride and window respectively.

B. Feature Generation and Selection

The following table shows the number of features for each
feature selection approach that were used to select discrim-
inating features from a dataset of 6676 features. The WRS
test was used to generate 8 out of 10 feature selections. The
number of features in each feature selection is less than 100.
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TABLE III: Number of Features under each Feature Selections

Feature Selections Number of features MI PCA WRS test
Selection 1 51 ✓ ✗ ✗
Selection 2 55 ✗ ✓ ✗
Selection 3 71 ✗ ✗ ✓
Selection 4 20 ✗ ✗ ✓
Selection 5 41 ✗ ✗ ✓
Selection 6 21 ✗ ✗ ✓
Selection 7 43 ✓ ✗ ✓
Selection 8 86 ✓ ✗ ✓
Selection 9 18 ✓ ✗ ✓

C. Classification and Model Evaluation

This study employed a range of learning algorithms to
experimentally determine the best classification model from
among the most commonly used models. A total of nine
individual learning models were tested. The following multi-
line plot (Figure 6) illustrates the accuracy deviations for
each combination of model and feature selection, allowing for
a comparison of model performance across different feature
sets. Each line represents a feature selection, with the X-axis
indicating the models and the Y-axis displaying accuracy based
on 10-fold cross-validation. The red horizontal line at 90%
accuracy marks a threshold to highlight feature selection and
model combinations that achieved greater than 90% accuracy.
From this plot, nine combinations that exceed this threshold
can be identified. Notably, the green line corresponding to
Selection 3 shows that Model 1 and Model 3 achieved the
highest accuracy with this feature selection. Therefore, Model
1 with Selection 3, and Model 3 with Selection 3 can be
regarded as the best combinations of learning models and
feature selections based on accuracy.

Fig. 6: The Change of Accuracy with Different Learning
Models and Feature Selections

Since accuracy was determined using 10-fold cross-
validation, it represents the average accuracy across 10 sub-
samples of the dataset. Therefore, it is crucial to examine
the standard deviation (SD) of accuracy to check for over-
fitting. The following multi-line plot (Figure 7) depicts the
SD for each model and feature combination. The feature
selections are represented by lines, while the models are
represented by the X-axis. The Y-axis represents the standard
deviation of the accuracy measured using a 10-fold cross-
validation. The red horizontal line at an SD of 0.10 serves
as a threshold value, with lower SDs being preferable. An
SD greater than this threshold suggests that the model may

have overfitted to some subsamples during cross-validation.
The plot highlights 7 model and feature selection combinations
with SDs below this threshold. Among the two top-performing
combinations identified in Figure 6 based on accuracy, only
Model 1 with Selection 3 has an SD below the threshold value.
Consequently, this combination could be selected as the most
effective combination of individual learning model and feature
selection.

Fig. 7: The Change of SD of Accuracy with Different Learning
Models and Feature Selections

The table below presents 9 combinations of models and
feature selections with accuracy greater than 90%, along with
their precise accuracy and standard deviation (SD). Addition-
ally, the table highlights the two combinations identified from
Figure 6, with their corresponding accuracy and SD.

TABLE IV: Models and Feature Selections Combinations with
90 Percent Plus Accuracy

Number Feature Selections Model Accuracy: Mean SD
S3M1 Selection 3 Model 1 0.9633 0.07
S4M1 Selection 4 Model 1 0.9233 0.13
S3M3 Selection 3 Model 3 0.9600 0.12
S4M3 Selection 4 Model 3 0.9233 0.09
S5M3 Selection 5 Model 3 0.9033 0.18
S5M9 Selection 5 Model 9 0.9267 0.09
S6M9 Selection 6 Model 9 0.9233 0.09
S8M3 Selection 8 Model 3 0.9067 0.13
S8M9 Selection 8 Model 9 0.9233 0.09

Additionally, the most accurate models were combined
using a voting classifier, which utilizes majority voting based
on predicted class labels. This ensemble learning approach
was applied to Models 10 and 11. Consequently, a new model
and feature selection combination, S1M10, was identified,
achieving over 95% accuracy, as shown in Table V.

TABLE V: Ensembled Models and Feature Selections Com-
binations with Accuracy

Number Feature Selections Model Accuracy: Mean SD
S3M10 Selection 3 Model 10 0.9633 0.07
S4M10 Selection 4 Model 10 0.9433 0.09
S5M11 Selection 5 Model 11 0.9067 0.13
S8M11 Selection 8 Model 11 0.9067 0.13

Overall, three combinations of models and feature selection
methods—S3M1, S3M3, and S3M10—have been identified
with an accuracy of over 95%. The performance of these
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models can be evaluated using metrics such as Accuracy,
Precision, Recall, and F1-score.

TABLE VI: Final Feature Selections and Models Combination
with Performance Metrics

Number Feature Selections Model Metric Value

S3M1 Selection 3

Model 1

Accuracy: Mean 0.9633
SD 0.07

Precision: Mean 0.9750
SD 0.07

Recall: Mean 0.9667
SD 0.10

F1-score: Mean 0.9657
SD 0.07

S3M3 Selection 3

Model 3

Accuracy: Mean 0.9600
SD 0.12

Precision: Mean 0.9500
SD 0.15

Recall: Mean 0.9500
SD 0.15

F1-score: Mean 0.9500
SD 0.15

S3M10 Selection 3

Model 10

Accuracy: Mean 0.9633
SD 0.07

Precision: Mean 1.0000
SD 0.00

Recall: Mean 0.9167
SD 0.17

F1-score: Mean 0.9467
SD 0.11

Because the feature selection is the same for all combina-
tions, Selection 3 can be chosen as the best feature selection
with discriminating features for classifying rs-fMRI data from
the CM&N dataset. The accuracy and SD of S3M1 and S3M10
are the same. S3M10 has the highest precision (100%), which
indicates that all positively predicted data is indeed positive.
However, its recall is lower than S3M1, implying that the
probability of S3M10 which can predict some positive data
as negative is higher than the probability of S3M1 which can
predict some positive data as negative. However, the F1-score
of S3M1 was higher than the F1-score of S3M10. As the
harmonic mean of precision and recall, the F1-score for S3M1
is high, indicating that it is theoretically the best-performing
model.

V. DISCUSSION

A. Stride and Window Length Selection

The selection window and length and stride were a crucial
part of the implementation of the proposed approach since
the selected window length and stride are key to estimating
DFCs in rs-fMRI data. In the process, a wide range of window
lengths and strides were evaluated. As shown in Figure 4, as
the size of the stride increases, so does the prediction error.
When the stride size is set to 10, large window lengths generate
lower error rates than small window lengths, whereas when the
stride size is set to 1, small window lengths generate lower
error rates than larger window lengths (Figure 5).

As presented in Table II and Figure 4, The majority of the
410 pairs fall between strides 1 and 5 at the error threshold of
0.1. The majority of the 182 pairs fall between strides 1 and
3 when the error threshold is set to 0.05. All 61 pairs have

stride 1 at the final threshold of 0.02. Using that insight, stride
1 can be considered as the best window length.

Figure 5 represented the deviation of the prediction error
under different window lengths with the selected stride length
1. Figure 5 showed a significant positive relationship between
prediction errors and window length. That is, as the window
length increases, so does the prediction error.

By carefully analyzing the graph, it is easy to identify the
window length with the lowest error. The window length with
the minimum error of 0.011556 is 64, with the error calculated
to the fourth decimal place. However, evaluating the error
change to this precision might not be necessary. When the
threshold is set to 0.02, there are 61 window lengths that could
be considered as potential candidates for the optimal window
length, as their error differences are minimal enough to be
considered negligible.

B. Feature Generation and Selection

3 distinct feature selection methods were utilized in this
study. By combining and modifying the parameters of these
algorithms, it was possible to produce 9 feature selections.
These 9 feature selections vary in number of features. Never-
theless, no feature selection contains more than 100 features.
This implies that 6676 features were able to be reduced to a
significantly lower amount. In terms of the methods utilized
to develop these feature selections, the WRS test stands out
because it has contributed to 8 of the 10 feature selections.

C. Classification and model evaluation

Figure 6 illustrates the accuracy changes of all individ-
ual learning models with all feature selections. There have
only been 9 times where any line has surpassed the red
threshold line. That indicates that 9 different combinations
of individual learning models and feature selections had an
accuracy that was more than 90%. Table IV elaborates on these
9 combinations. Nevertheless, there were only two different
combinations that had an accuracy of more than 95%. Table V
demonstrates another model and feature selection combination
with an accuracy greater than 95%. This model was created
using combining previous models which has the accuracy
over 95%. These three combinations are then summarized
in Table VI along with the performance metrics to evaluate
their performance. The first insight is that the feature selec-
tion process is the same for all combinations. Selection 3
consistently appears across all combinations, indicating that
it is the most effective feature selection approach for our
model. Therefore, Selection 3 identifies the most significant
discriminative features of rs-fMRI brain scans, enabling the
classification of Chess Masters and Novice players based on
their dynamic functional connectivity. By analyzing these key
features, we can trace them back to specific brain regions,
providing insights into which areas are most influential in
mastering chess.

In Table VI , we compare final three models with accuracy
over 95%: S3M1, S3M3, and S3M10. S3M1 and S3M10
both exhibit the highest accuracies, with identical standard
deviations, making them strong candidates for the best model.
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However, when examining additional metrics—precision, re-
call, and F1-score—the differences between these models
become more significant.

1) Understanding Precision and Recall in the Chess Expert
Classification Context: High precision indicates that when the
model predicts a subject as a novice, there is a high likelihood
that the subject is indeed a novice.

High recall indicates that the model successfully identifies
most novices, but it may include some false positives (chess
masters misclassified as novices).

Given that novices are labeled as positive and chess masters
as negative, precision and recall must be interpreted with care.
S3M10, with its perfect precision (100%), ensures that every
subject predicted as a novice is truly a novice. However, its
lower recall suggests that some novices might be overlooked
and incorrectly classified as chess masters. This scenario is less
concerning if the goal is to ensure that every novice identified
is accurate, but it may miss true novices.

Conversely, S3M1, with a higher recall, is more effective at
identifying all novices, but its slightly lower precision means it
may misclassify some chess masters as novices. This is crucial
if the priority is to ensure that no novice is misclassified, even
if it means some chess masters are incorrectly identified as
novices.

2) Proposed Criteria for Model Selection: The selection of
the best model depends on the specific costs associated with
false positives (novices misclassified as chess masters) and
false negatives (chess masters misclassified as novices) in the
given scenario. Below are two possible scenarios:

a) Scenario 1: Prioritizing the Avoidance of False Posi-
tives (Novices Misclassified as Chess Masters): In situations
where it is critical to ensure that only true chess masters
are identified (e.g., for a high-stakes chess competition or
an exclusive chess master certification), S3M10 might be
preferable. Its perfect precision ensures that no novices are
mistakenly classified as chess masters, even if it means some
true novices are missed.

b) Scenario 2: Prioritizing the Avoidance of False Neg-
atives (Chess Masters Misclassified as Novices): In cases
where missing out on identifying a true chess master is more
detrimental (e.g., for selecting a candidate with a high level of
chess expertise), S3M10 might be the better choice. Its higher
recall ensures that most chess masters are correctly identified,
even if it means accepting some novices being misclassified
as chess masters.

3) Conclusion and Final Recommendation: While S3M1
and S3M10 are both strong candidates, the decision on which
model is the best should be based on the real-world application
and the relative costs of false positives and false negatives.

To further refine model selection, a cost-sensitive learning
approach is recommended, where the misclassification costs
are explicitly incorporated into the model’s decision-making
process. This could involve adjusting the decision threshold
or employing a weighted F1-score that reflects the relative
importance of precision and recall for the specific application.

In summary, while the selection of the best model can be
subjective, it is essential to align the model choice with the

specific needs and risks associated with the real-world scenario
in which the model will be deployed.

VI. CONCLUSION

A classification model was created in this study to classify
rs-fMRI data of chess players. The objective of the clas-
sification model was to separate chess players into distinct
categories of Chess Masters and Novices. In 10-fold cross-
validation, our developed classification model achieved an
accuracy of 96.33%. When compared to prior research, which
obtained the highest accuracy of 85.45% utilizing solely rs-
fMRI data in chess players, this represents a significant
improvement of 10.88%. Additionally, our model demonstrates
an 8.33% improvement over the combined approach of rs-
fMRI and T1-weighted MRI data, which reached an accuracy
of 88%. This accuracy enhancement was achieved through the
exclusive use of rs-fMRI data.

The improvement in accuracy can be attributed to several
factors. In the data pre-processing phase, a range of window
length and stride combinations was analyzed, with the optimal
combination selected based on the lowest prediction error of
0.011556. This optimal combination proved effective in esti-
mating dynamic functional connectivities (DFCs) in rs-fMRI.
Moreover, after testing various feature selection techniques,
Selection 3 emerged as the most effective approach, consis-
tently appearing across all combinations. This selection iden-
tifies the most significant discriminative features of rs-fMRI
brain scans, facilitating the classification of Chess Masters and
Novice players based on their dynamic functional connectivity.
In addition, several types of learning algorithms, such as
machine learning, deep learning, and ensemble learning, were
tested. In total, 11 different learning models and 9 different
feature selection strategies were tested. In each combination of
learning model and feature selection, hyper-parameter tuning
was used to fine-tune the model with the best parameters.
Following a comprehensive review of learning models and
feature selection methods, the best learning model and feature
selection technique were selected.

The next step in this research will involve identifying the
specific brain regions associated with key features identified in
Selection 3. This will not only provide deeper insights into the
neural correlates of chess mastery but also hold potential for
making medically significant discoveries. Understanding these
brain regions could offer valuable information for cognitive
neuroscience and clinical applications, potentially informing
interventions and strategies for enhancing cognitive skills and
understanding brain function in various contexts.
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