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Abstract— In the context of climate variability, predicting 

agricultural output remains a pressing challenge, particularly for 

high-value crops like black pepper in Sri Lanka, a leading spice 

exporter. This study introduces a novel machine-learning 

approach to predict black pepper yield and quality, utilizing 

thirty years of detailed weather data from the Matale district. 

Employing Long Short-Term Memory (LSTM) networks, the 

complex dependencies between weather conditions—including 

rainfall, temperature, and humidity—and crop productivity are 

modelled. The analysis demonstrates that LSTM models can 

effectively forecast black pepper yield and quality by learning 

from historical weather patterns and corresponding crop 

performance data. The models achieved a mean absolute error of 

18-20% for quality predictions and a mean squared error 

reflecting consistent model performance across different 

evaluations. By providing reliable yield and quality estimates, 

these models serve as valuable tools for farmers and 

policymakers to better plan and manage black pepper cultivation 

in response to anticipated climate conditions. Furthermore, the 

research highlights the potential for enhancing model accuracy 

by incorporating diverse regional data, thereby contributing to 

more resilient agricultural practices in the face of global climate 

change.   

Keywords— black paper, pepper quality, yield prediction, 
climate change, machine Learning,  LSTM.  

I. INTRODUCTION

Black Pepper is the most widely used spice in the world. 

Known as the land of spices, Sri Lanka is renowned for its for 

its black pepper, which is in high demand globally due to its 

unique qualities, particularly its excellent aroma and high 

content of volatile oils, oleoresins, and Piperine, compared to 

peppers from other countries. The total area dedicated to spice 

cultivation in Sri Lanka is 122,000 ha, of which 42,989 ha are 

allocated for pepper. 
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For commercial cultivations, cuttings are selected from 

terminal stems or ground runners. If cuttings are taken from 

lateral branches bush-type pepper plants can be produced. 

Moreover, the annual export value of the crop amounts to Rs. 

458 million, highlighting Sri Lanka's potential to become one 

of the main quality black pepper providers worldwide [1].  

Overall, a nursery period of 4-6 months should be maintained 

for plants.  The duration of the reproductive period is 8 - 9 

months. It takes 8 to 9 months for harvesting after flower 

initiation. Eventually, Pepper is harvested after 7-8 months of 

maturity. Therefore, the black pepper yield and quality data 

are collected annually [2].   

However, climate change poses a significant challenge to spice 

farmers in Sri Lanka, a tropical island nation with diverse 

weather patterns. Pepper flourishes in tropical climates with 

relatively high humidity and minimal variations in day length 

throughout the year. However, black pepper is sensitive to 

excessive heat and dryness, making adequate rainfall and its 

distribution a crucial factor in determining the success of 

pepper cultivation and its overall productivity [3]. However, 

while there is growing research on this issue, consensus on 

how these changes specifically affect pepper yield and quality 

is still lacking. For example, some studies suggest that 

decreased rainfall can lead to lower yields and quality, while 

others indicate that excessive rainfall can also be detrimental 

[4]. These uncertainties are particularly relevant in Sri Lanka, 

where pepper cultivation often relies on rainfed conditions. 

To the best of the authors' knowledge, there have been no prior 

studies in Sri Lanka have investigated predictive models for 

black pepper crop yield and quality. Given the diverse climate 

parameters across different regions in Sri Lanka and the 

country's vulnerability to climate change, pepper production 

is significantly impacted, which in turn affects both yield and 

quality, potentially diminishing the nation's foreign exchange 

earnings from this crucial crop. Recognizing the critical 

importance of black pepper as a cash crop and the potential 

effects of climate variability on its production, there is a 

pressing need to understand the relationship between rainfall 

patterns and pepper yield and quality.   

This study aims to address this significant knowledge gap by 

developing a Long Short-term Memory (LSTM)based 

Machine Learning (ML) prediction model for black pepper  

yield and quality under different rainfall scenarios, 

specifically focusing on the Matale district in the Central  
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Province of Sri Lanka, often regarded as the cradle of spices. 

Focusing initially on the Matale region, this research aims to 

generate insights that can be extended to enhance pepper 

cultivation practices in broader geographical areas, with the 

potential for future expansion beyond a single district.  
 

The proposed model used a combination of agronomic and 

climatic data to predict black pepper yield and quality. The 

climatic data included annual rainfall, annual rainy days (the 

distribution of rainfall), annual rainfall soon after the drought 

period, and the annual drought period. The agronomic data 

included pepper yield and quality parameters. The LSTM 

model was trained on a dataset that combines these variables 

to predict pepper yield and quality. Google Colab was used to 

develop the model. The data preprocessing and simulation 

parts were also conducted using the same platform.   
 

The proposed model makes several contributions to the field 

of agricultural prediction. It provides reliable predictions of 

pepper yield and quality by using a combination of climatic 

and agronomic variables. Furthermore, to the best of our 

knowledge, this is the first attempt to employ an ML approach 

to predict pepper yield and quality, which has not been widely 

used in agricultural prediction in Sri Lanka.   
 

The article is organized as follows. Section II reviews relevant 

literature, highlighting the advancements and challenges in 

using ML for agricultural yield prediction, thereby setting the 

stage for the innovative approach proposed in this study. 

Section III details the methodology, describing the phases of 

data collection, preprocessing, and model development, 

essential for understanding the predictive modelling process. 

Section IV presents the results and discusses the effectiveness 

of the LSTM models, demonstrating their capability to 

accurately forecast agricultural outcomes under varied 

climatic conditions. Finally, Section V concludes by 

summarizing the key findings and outlining potential future 

work to enhance model accuracy and applicability in different 

agricultural settings.   

II.  RELATED WORK 

ML techniques have transformed the field of crop yield 

prediction, enhanced accuracy, and enabled more reliable 

forecasting. These methods are indispensable for modern 

agricultural practices, aiding in crucial decisions related to 

crop management and sustainability.   
 

Among the popular algorithms, Support Vector Machines 

(SVM), Random Forests (RF), and deep learning approaches 

like Convolutional Neural Networks (CNN) have been widely 

adopted  [5]- [8]. Studies, such as those by You et al. (2017), 

demonstrate the effectiveness of CNN for predicting soybean 

yields in the United States, utilizing sequences of remotely 

sensed images. This showcases the capability of deep learning 

approaches to process and analyze complex spatial and 

temporal agricultural data.   

Jeong et al. (2016) further validated the application of 

Random Forest models in predicting yields for crops such as 

wheat, maize, and potatoes, achieving a Root Mean Square 

Error (RMSE) significantly lower than that obtained through 

traditional multiple linear regression models. This illustrates 

the superiority of ML techniques over conventional statistical 

methods in handling multidimensional and heterogeneous 

datasets typically encountered in agricultural research. 

Moreover, the comparison among machine learning 

algorithms reveals that techniques such as RF are not only 

more precise but also offer robust versatility across different 

scales and environmental conditions.  
  

However, the deployment of these advanced ML models in 

crop yield prediction is not without challenges. These models 

require significant computational resources for training and 

deploying, which may not be feasible in resource-limited 

settings. Addressing these limitations, Mohan et al. (2018) 

utilized self-organizing maps to enhance model efficiency by 

reducing data dimensionality, demonstrating a practical 

approach to applying ML under constrained conditions.   
 

Moreover, the comparative studies conducted by Oguntunde 

et al. (2018) which pitted SVM against MLR in predicting rice 

yield influenced by climate variables in Southwest Nigeria, 

underscore the capability of SVM to capture complex 

nonlinear relationships better than MLR. This comparison not 

only highlights the advanced capabilities of machine learning 

models but also their adaptability to diverse agricultural 

environments, making them invaluable tools for local and 

regional agricultural planning and management.   
 

The integration of ML in crop yield prediction also faces 

issues related to model selection and algorithmic complexity. 

The choice of the appropriate model and its parameters 

significantly impacts the accuracy and applicability of the 

predictions. Khaki & Wang (2019) addressed this by 

designing a sophisticated deep learning model that 

outperformed conventional regression and shallow network 

approaches, indicating the critical role of model architecture 

and depth in handling agricultural data effectively.   
 

Despite these technological advancements, significant gaps 

remain in the application of ML to crop yield prediction. 

Current models often fail to integrate multidisciplinary data 

comprehensively, such as soil health indicators, pest and 

disease infestations, and micro-climate variations, which are 

crucial for accurate yield forecasting  [9].  
 

Furthermore, the black-box nature of many deep learning 

models poses challenges for interpretability and trust among 

users, particularly in sectors where understanding model 

decision-making is critical.   

During this research, it became evident that existing literature 

on the application of Long Short-term Memory (LSTM) 

models to predict agricultural yield and quality, specifically 

for black pepper, is limited. The scarcity of comprehensive 

studies in this domain presented a challenge in sourcing 

relevant information and highlights a significant gap in current 

research. This study aims to address this gap by providing 

climate-driven insights into black pepper yield and quality 

prediction, thereby contributing to the emerging body of 

knowledge in this area.  

III. METHODOLOGY   

A. Study Phase 
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Fig.1 Study Phase   

   

The study outlined in the flow chart depicted in Figure 1 

involves a structured approach to predict pepper yield and 

quality through five distinct phases. Initially, weather (climate) 

and productivity data (agronomy) are collected, serving as the 

foundation for analysis. In the data preprocessing phase, this 

data undergoes normalization to ensure a uniform 

representation and is reshaped into the appropriate format for 

subsequent processing. Next, data analysis is undertaken to 

identify specific weather parameters that significantly impact 

pepper yield and quality, optimizing the predictive model's 

focus and accuracy. The feature selection step further refines 

the model by selecting the most relevant features that should 

be input into the deep learning framework. With the relevant 

features and parameters at hand, the model training phase 

involves developing and training an LSTM model tailored for 

this purpose. Finally, the prediction phase utilizes the trained 

model to make forecasts on pepper yield and quality, thereby 

assessing the model’s effectiveness and accuracy in real-

world scenarios.   

B. Data Collection    

Data collection for this research was conducted at the Central 

Research Station of the Export Agriculture Department in 

Matale and the Natural Resource Management Center 

(NRMC) of the Agriculture Department. The research 

involved the compilation of two distinct datasets: weather and 

black pepper productivity data related to black pepper 

cultivation. The weather dataset encompassed a range of 

environmental parameters, including annual average 

temperature (℃, [24.64 – 26.75]), annual average relative 

humidity (%, [74.23 – 80.89]),  annual rainfall (mm, [1115.8 

– 2733.5]), the number of rainy days (number of days, [91 – 

152]), the duration of drought period in February and March 

(number of days, [12 – 30]), and rainfall immediately 

following drought periods (mm, [751.6 – 1643.3]). These 

measurements were crucial for analysing the environmental 

factors affecting agricultural productivity.    

 

Additionally, black pepper productivity data was collected, 

focusing on black pepper yield (kg/ha, [620 – 1450]), and key 

quality parameters such as bulk density (g/l, [533 – 584]), 

Piperine content (%, [4.9 – 6.4]), and oleoresin content (%, 

[12.9 – 17.2]). Data gathering methodologies included the use 

of automated weather stations for recording climatic data and 

manual sampling coupled with laboratory analysis for 

agronomic data. The data collection process for this study 

spanned a period of 30 years, from January 1992 to December 

2022. The original weather dataset consisted of a total of 7671 

daily data records, covering the period from 2002 to 2022. 

The black pepper productivity dataset comprised 30 annual 

records, since 1992 to 2022 being the period of observation. 

To create a dataset that would allow for the analysis of black 

pepper productivity and weather parameters, the 20-year daily  

weather dataset was aggregated into 20-year annual data 

records. It was done by taking the average of the daily values 

for each year, resulting in a dataset with 20 annual records.   

C. Data Preprocessing    

Normalization of the dataset was achieved through the 

application of the MinMax Scaler in Equation (1), which 

adjusts the data values to a scale ranging from 0 to 1.    

 

                    𝑥𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 =
𝑥−min (𝑥)

𝑚𝑠𝑥(𝑥)−min(𝑥)
                 (1) 

   
Where x represents an original value, min (x) is the minimum 

value in the feature, and max(x) is the maximum value. This 

transformation ensures uniformity in the scale of all input 

features, which is crucial for maintaining consistency across 

the dataset. Following the normalization, the input data was 

reshaped into a three-dimensional array conforming to the 

input requirements of the proposed deep learning model, 

specifically in the format (batch_size, timesteps, 

input_dimension).   

D.  Data Analysis     

Data analysis was conducted in two steps. Firstly, an analysis 

of the weather dataset was carried out to understand the 

monthly weather distribution and to identify any anomalies or 

deviations from the average monthly rainfall distribution in 

the Matale district. Subsequently, black pepper productivity 

data and weather data were analysed to identify weather 

patterns and trends that occur during the growth season of 

black pepper and are associated with higher yields. This 

analysis also aimed to understand which weather variables 

significantly impact pepper productivity and enhance the 

interpretability of the model.  

1) Weather dataset analysis   

The objective of this data analysis is to assess the 

compatibility of the weather data collected over 30 years with 

the standardized average rainfall distribution published by the 

Department of Export Agriculture, which is based on 40 years 

of research cited in [10]. Additionally, the distributions of the 

average minimum and maximum temperatures recorded in the 

weather dataset were compared with the standard average 

minimum and maximum temperature distributions published  

in [11]. The results of the analysis are presented in Figure 2, 

which indicates that the patterns in the collected data align 

with the standard distributions.  

 

2) Black Pepper productivity dataset analysis  

Correlation tests were conducted with black pepper 

productivity data and weather data to identify weather 

patterns and trends during the growth season of Black pepper 

that correlate with higher yields. The pepper productivity  

dataset included 30 records of both pepper yield data and 

pepper quality data.  Statistical analysis was performed using 

SPSS software.   
 

Three quality parameters of Black pepper were evaluated: 

Bulk Density (g/l), Oleoresin Content (%), and Piperine 
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Content (%) of the seeds. The measurement of Bulk Density 

was carried out using a 1-liter volume cup, weighing the seeds 

within. High quality pepper was defined as having a Bulk 

Density exceeding 550g/l, a Piperine content over 5%, and an 

Oleoresin content above 14%, with Bulk Density deemed the 

most influential on overall quality. 
  

 

The study examined the relationship between black pepper 

yield and weather parameters, including annual rainfall, 

annual average temperature, and annual average humidity.  

Additionally, the study analyses the correlation between black 

pepper quality parameters, specifically bulk density, Piperine 

content, and Oleoresin content, and the same set of weather 

parameters. The analysis was conducted separately for each 

parameter to identify any potential patterns or trends.   
 

The study revealed a weak positive linear correlation between 

annual average temperature and black pepper yield, 

suggesting a minor positive impact of temperature on pepper 

productivity. Furthermore, the analysis of pepper quality 

parameters, including bulk density, piperine content, and 

oleoresin content, showed a weak positive linear relationship 

with annual average temperature, indicating a slight 

improvement in pepper quality with increasing temperature. 

Therefore, the overall effect of annual average temperature on 

black pepper productivity was relatively low, suggesting that 

other weather factors may play a more significant role in 

determining pepper yield and quality.  
 

  

 

Conversely, the analysis of the relationship between rainfall 

and black pepper productivity parameters revealed a 

significant positive linear correlation, suggesting that 

increased rainfall is associated with improved pepper 

productivity.  
 

Figure 3 depicts these correlations to further support this 

finding. All the graphs illustrate a clear and consistent pattern 

of positive correlation between rainfall and pepper 

productivity. These results suggest that rainfall is a key factor 

in determining black pepper productivity, and that optimal 

rainfall conditions can significantly enhance pepper 

production.   

 

E. Feature Selection    

The correlation matrix depicted in Figure 4 identified rainfall 

parameters highly correlated with each black pepper 

productivity variable (yield and quality). These identified 

features are significant for predicting pepper yield and quality. 

According to Figure 4, a higher correlation was observed 

between annual rainfall, annual rainy days, and rainfall soon 

after the drought period with a weak influence on black 

pepper yield, bulk density, piperine content, and oleoresin 

content. Therefore, the results indicate that RH has a minimal 

impact on black pepper yield and quality.   

     

Black Pepper yield is marked with the yellow square. In 

addition to these rainfall parameters, the drought period 

showed a considerable correlation with black pepper quality.  

 

 

 

 
Fig. 2 Comparison of average data distributions of selected parameters in the weather dataset with the standard weather distributions for Matale  
District, published by the Department of Export Agriculture: (a) Comparison of the maximum temperature distribution with the standard 

maximum temperature distribution, (b) Comparison of the minimum temperature distribution with the standard minimum temperature  
distribution, (c) Comparison of the rainfall distribution with the standard rainfall distribution.   
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Fig. 3 The analysis of annual rainfall with black pepper yield and quality parameters; (a) black pepper yield and annual rainfall 
correlation graph, (b) Bulk density and annual rainfall correlation graph, (c) Piperine content and annual rainfall correlation graph, 

(c) Oleoresin content 
 
 

 
 
 

Fig.  4 Correlation matrix (rainfall parameters highly correlated with pepper yield and quality are highlighted) 
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Hence, the parameters of annual rainfall, annual rainy days, 

and rainfall soon after the drought period were used as the 

input features to predict black pepper yield. Meanwhile, for  

predicting black pepper quality, the input features considered  

were annual rainfall, annual rainy days, rainfall soon after the 

drought period, and the drought period.  

F. Model Design   

Based on the outcomes of the feature selection process and 

insights from the literature review, an LSTM model was 

selected for predicting both the yield and quality of black 

pepper. An LSTM model is a type of Recurrent Neural 

Network (RNN) architecture designed to process and predict 

sequence data. It is particularly suited for this task due to its 

ability to capture complex temporal relationships within the 

data, that necessitate capturing context and prolonged 

connections within sequential data, such as forecasting time 

series, analysing natural language, and identifying speech  

patterns benefit from architectures like LSTMs. Unlike 

traditional time-series models that rely on a fixed time 

window to consider past values, the LSTM can learn from 

data with variable time intervals, allowing it to effectively  

discern long-term patterns and trends. This capability is 

crucial for predicting black pepper yield and quality, where 

variable weather conditions and environmental factors 

significantly influence outcomes.   
 

The structure of the proposed LSTM model is depicted in 

Figure 5. The model maintains a consistent structure and  

hyperparameters, but is trained on two distinct datasets to 

predict pepper yield and quality. It includes a layer with 64 

units and utilizes the ReLU activation function to facilitate 

faster training without compromising accuracy. Adam is 

chosen as the optimizer for its robustness in managing sparse 

gradients in noisy datasets, and the Mean Squared Error (MSE) 

serves as the objective function, aiming to minimize the 

average squared differences between the predicted and actual 

values.   

 

The model is trained separately on identified features to 

predict the black pepper yield and quality. The yield 
 

 
 
                    Fig. 5 Black Pepper Yield Prediction Model 

prediction model was trained using data on annual rainfall, 

annual rainy days, and rainfall immediately following the 

drought period, targeting the prediction of black pepper yield 

in kg/ha. Conversely, the pepper quality prediction model was 

trained using data on annual rainfall, annual rainy days, 

rainfall immediately after the drought period, and the annual 

drought period, predicting the quality (bulk density) in g/l.   
 

Model training was conducted on the Google Colab platform. 

To train the model, relevant fields from the weather dataset 

and black pepper productivity dataset were utilized. Initially, 

the LSTM model was trained to predict black pepper yield and 

quality using datasets that contained only 25 records, with 5 

records reserved for testing. This led to overfitting the model. 

To address the issue, an LSTM-based data simulation 

mechanism was employed. This approach generated 30 

simulated records for the quality prediction model and 60 for 

the yield prediction model. Consequently, the total number of 

training data increased to 55 for the quality prediction model 

and 85 for the yield prediction model. 
 

Although the core architecture remains the same, the training 

configurations differ between the two applications; for yield 

prediction, the model is trained for 23 epochs, while for 

quality prediction, it is trained for 27 epochs. Figures 6 and 7 

illustrate the learning curves of the LSTM model, 

demonstrating the model's generalizability on unseen 

 

 
Fig. 6 Pepper yield prediction LSTM model 

 

 
Fig. 7 Pepper quality prediction LSTM model. 
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data. Notably, the pepper quality prediction model exhibits 

better generalizability compared to the yield prediction model.   

IV. RESULTS AND DISCUSSION   

 

A) Evaluation Matrices    

The performance of the LSTM model was assessed using two 

commonly employed evaluation metrics in the field of 

machine learning: R-squared (R^2) and Mean Absolute Error 

(MAE). These metrics are widely used in regression tasks due 

to their ability to provide a comprehensive and robust 

assessment of a model's performance. MAE is robust to 

outliers, a common issue in regression tasks, and is sensitive 

to the magnitude of errors. R^2 provides a measure of the 

model's ability to capture the underlying patterns in the data. 

A higher R-squared value indicates that the model is a better 

fit for the data, meaning that it captures more of the underlying 

patterns in the data. Therefore, the use of MAE and R squared 

as evaluation metrics in machine learning, particularly in   

regression tasks, is a widely accepted and effective practice. 

Equation (2) describes the R^2 equation: 

 𝑅 ^2 = 1 − (𝑆𝑆𝐸 − 𝑆𝑆𝑇)                                                  (2) 

 

where SSE is the sum of the squared errors (i.e., the difference 

between the predicted values and the actual values), and SST 

is the total sum of squares (i.e., the sum of the squared 

differences between the actual values and the mean of the 

actual values).   

MAE in Equation (3) measures the average absolute 

difference between predicted and actual values.   

𝑀𝐴𝐸  =  (1/𝑛) ∗  𝛴|𝑦_𝑡𝑟𝑢𝑒  −  𝑦_𝑝𝑟𝑒𝑑|                         (3) 

 

y_actual is the actual value, and y_predicted is the predicted 

value, and n is the total number of data points.   

 

B) Model Evaluation Results    

In this experiment, the proposed LSTM model was trained 

twice: (i) with the original training dataset, and (ii) with the 

original dataset supplemented by simulated records. After 

each training phase, the LSTM model was evaluated using a 

test dataset. The test dataset for the yield prediction model 

consisted of 8 records, while the test dataset for the quality 

prediction model consisted of 6 records. The results are 

reported in Table 2.   

 

The results of the experiment indicate that, for the yield 

prediction model, the R-squared value is 0.197 when trained 

with the original training data, and 0.262 when trained with 

the original and simulated data. For the quality prediction 

model, the R-squared value is 0.317 when trained with the 

original training data, and 0.358 when trained with the 

original and simulated data. This indicates that the model can 

explain about 31.7% of the variability in the quality data using 

the original training data, and 35.8% of the variability when 

the simulated data is included.   

 

TABLE 1   
MODEL EVALUATION RESULTS   

Prediction 

Model   
Training with Original 

Training Data   
Training with Original 

and Simulated Data   

R^2   MAE   R^2   MAE   

Yield   
Prediction   

0.197   0.187   0.262   0.147   

Quality   
Prediction   

0.317   0.192   0.358   0.189   

 
 

For the yield prediction model, the MAE is 0.187 when 

trained with the original training data, and 0.147 when trained 

with the original and simulated data. This suggests that the 

model is making predictions that are, on average, 18.7% away 

from the actual yield values using the original training data, 

and 14.7% away from the actual values when the simulated 

data is included. For the quality prediction model, the MAE is 

0.192 when trained with the original training data, and 0.189 

when trained with the original and simulated data. 
 

Overall, the results suggest that the models were able to 

explain a significant proportion of the variability in the 

dependent variables and made accurate predictions, with the 

inclusion of simulated data improving the performance of 

both models. It is indicated by the higher R-squared values 

and lower MAE values. This suggests that the simulated data 

can capture additional patterns in the data that are not captured 

by the original training data, leading to more accurate 

predictions.   

C) Prediction Results    

To determine the prediction accuracy, a dataset consisting of 

five records representing reported black pepper yield and 

quality from 2018 to 2022 was selected. The parameters 

chosen as input features for the LSTM model are depicted in 

Tables 2 and 3.   

 
TABLE II   

PREDICTION DATASET FOR DETERMINING THE BACK PEPPER   
YIELD    

Year     Input features   Black  
Pepper  
Yield   

(kg/ha)   
Annual   
Rainfall  

(mm)   

Annual   
Rainy   
Days   

Rainfall soon 

after the   
Drought   

(mm)   

2018   1900.4   139   1391.2   932   
2019   1359   121   910.8   782   
2020   1541.8   115   995.9   820   
2021   2439.3   138   1556.8   1320   
2022   2147.6   121   1517.5   1185   

 

The results, as shown in Table 4, indicate that the model 

performs reasonably well in predicting both black pepper 

yield and quality. For black pepper yield, the model  

 



Climate-Driven Insights: Predicting Black Pepper Yield and Quality with Long Short-term Memory Model    172 

 May 2025                                 International Journal on Advances in ICT for Emerging Regions 

ABLE III   
PREDICTION DATASET for DETERMINING THE BACK PEPPER   

QUALITY   
Year     Input features     Black   

Pepper  
Quality   

(g/l)   
Annual   
Rainfall  

(mm)   

Annual   
Rainy   
Days   

Drought 

Span   
Rainfall 

soon   
after the  
Drought   
(mm)   

2018   1900.4   139   23   1391.2   561   
2019   1359   121   21   910.8   538   
2020   1541.8   115   23   995.9   552   
2021   2439.3   138   27   1556.8   582   
2022   2147.6   121   16   1517.5   554   

   

Table 4 lists the prediction results for the test records provided 

in Tables 2 and 3.   

 
TABLE IV   

 LSTM MODELS’ PERFORMANCE EVALUATION   
Year   Black Pepper yield  

(kg/ha)   
Black Pepper quality   

(g/l)   

Actual   Predicted   Actual   Predicted   

2018   932   1000   561   550.66   
2019   782   823.43   538   547.43   
2020   820   1049.10   552   549.56   

2021   1320   1280.57   582   558.43   
2022   1185   1180.5   554   554.30   

  

predictions closely matched the actual values, particularly in 

the years 2021 and 2022, where the differences were minimal 

(e.g., 1320 kg/ha actual vs. 1280.57 kg/ha predicted in 2021 

and 1185 kg/ha actual vs. 1180.5 kg/ha predicted in 2022). 

However, the model showed a larger discrepancy in 2020, 

with the predicted yield being significantly higher than the 

actual value (1049.10 kg/ha predicted vs. 820 kg/ha actual). In 

terms of black pepper quality, the model demonstrated high 

accuracy, with the predictions for 2020 and 2022 almost 

identical to the actual values (552 g/l actual vs. 549.56 g/l 

predicted in 2020 and 554 g/l actual vs. 554.30 g/l predicted in 

2022). These results highlight the model's robust performance 

and its potential utility in agricultural forecasting, despite 

some variability in prediction accuracy across different years.   

The predictive capabilities of the LSTM model in assessing 

the quality of black pepper were rigorously evaluated, 

demonstrating noteworthy accuracy across multiple years. 

The model consistently produced reliable estimates closely 

aligning with actual measurements, particularly in the later 

years of the study. For instance, in 2022, the predicted quality 

was 554.30 g/l, almost indistinguishable from the actual 

quality of 554 g/l, showcasing the model’s precision. 

Furthermore, the model effectively captured slight 

fluctuations in quality metrics, as evidenced by its predictions 

in 2020 and 2021, which closely approximated the true values. 

This level of accuracy underscores the model's potential as a 

valuable tool for stakeholders in the agricultural sector, 

providing them with critical insights that can help optimize 

cultivation practices and enhance product quality.   
 

Although the model provides acceptable prediction results, it 

also has some limitations. Currently, it does not consider 

additional agricultural data sources such as soil characteristics, 

farming practices, and crop management techniques. 

Incorporating these sources could yield a more comprehensive 

understanding of the factors affecting black pepper yield and 

quality. The study also faces challenges due to the difficulty 

of collecting 30-year weather data from various districts. 

However, incorporating extensive weather data and pepper 

productivity records from other districts could enhance the 

model's accuracy in predicting outcomes under different 

weather conditions and across various pepper-growing regions. 

These limitations highlight areas for further research and 

development in the field of black pepper yield and quality 

prediction.   

V. CONCLUSION AND FUTURE WORK   

This study successfully leveraged LSTM models to predict 

black pepper yield and quality in the Matale district of Sri 

Lanka, demonstrating the potent application of machine 

learning in agricultural forecasting. The models achieved 

notable prediction accuracy, with the yield and quality 

predictions closely aligning with actual yields and quality, 

particularly in recent years. Utilizing a detailed 30-year 

weather dataset, the models provided robust predictions with 

a mean absolute error of 18-20% for quality and consistently 

reliable performance across various assessments. These 

findings underscore the LSTM's effectiveness in capturing 

complex temporal relationships between weather conditions 

and crop productivity, offering valuable tools for farmers and 

policymakers to enhance agricultural planning and response 

strategies. The study's significance lies in its potential to 

transform agricultural practices by enabling more precise and 

informed decision-making, ultimately contributing to 

sustainable farming practices and economic stability in 

regions dependent on agriculture. Despite the promising 

outcomes, the research identifies avenues for future 

enhancement, particularly in broadening the dataset to include 

additional agricultural factors such as soil conditions and crop 

management practices. Future work could also expand the 

geographical scope of the study to validate the model's 

effectiveness across different climatic zones, thereby refining 

its applicability and accuracy in national agricultural contexts.   
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