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Abstract—This study investigates the potential employability
of Shallow and Deep Feed Forward Neural Networks (FFNs)
in detecting attacks on low-resourced IoT application servers.
It employed a Shallow FFN model with a single hidden layer
of 512 neurons, and a Deep FFN model with 7 hidden lay-
ers, having between 256 to 4 neurons respectively. The study
constructed four Shallow and Deep FFN models, utilizing two
balanced UNSW-NB1S5 datasets containing 20 and 40 features.
Experiments were conducted to detect network attacks on IoT
networks. The results demonstrated that the Deep FFN model
utilizing 40 features, despite slightly longer prediction times and
higher resource usage, consistently outperformed other models,
achieving an accuracy of 98.37%. Therefore, Deep FFN models
prove suitable for protecting high-resourced IoT application
servers. The Shallow model, achieving a faster detection time and
moderate accuracy of 93%, is potentially employable in resource-
constrained, low-latency IoT servers. This research enhances IoT
security by employing Shallow and Deep FFN models based on
different resource levels in IoT environments. Furthermore, it
proposes integrating the Deep model into next-generation firewall
systems to protect higher-value IoT servers. Future work involves
exploring hybrid FFN architectures for protecting edge servers
from network attacks.

Index Terms—IoT Server Security, Neural Networks, Network
Attack Detection, Deep and Shallow models

I. INTRODUCTION

Application servers deployed as central nodes in IoT (Inter-
net of Things) environments, such as healthcare facilities and
smart cities, play a pivotal role in delivering critical services
in the Industry 4.0 Digital Economy [1]. The rapid prolifera-
tion of IoT systems for data aggregation and communication
has created a massive attack surface, making them prime
targets for malicious actors. The inherent vulnerabilities in
IoT, caused by the heterogeneity of devices and platforms,
resource constraints, lack of security standards, and physical
exposure, allow threat actors to exploit IoT networks. These
vulnerabilities enable unauthorized access, service disruptions,
theft of sensitive information, device abuse, and large-scale
DDoS attacks [2]. Such attacks, capable of disrupting critical
services, pose significantr iskst o b usinesses, a nd national
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economies, and potentially harm lives. Conventional secu-
rity measures struggle to mitigate sophisticated cyber attacks
targeting low-resource IoT infrastructure, which differs from
traditional network architectures due to increased exposure,
sheer distribution, and real-time low latency nature. Therefore,
low-resourced IoT application servers demand robust security
measures against escalating network threats across various
sectors [3]. Figure 1 illustrates an IoT environment.
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Fig. 1: An IoT environment

Deep Learning (DL) offers real-time network traffic analysis
capabilities to identify suspicious activities, helping detect
network attacks on application servers in IoT environments
[4]]. Research shows that DL is effective in detecting DDoS
attacks, malware propagation, unauthorized access, injection
attacks, and phishing attempts within network traffic, making
it an important area of study [S]. However, advanced DL
algorithms such as Long Short-Term Memory (LSTM) Net-
works, Transformers, and Encoders, which require substantial
resources, face implementation challenges in low-resource IoT
environments [2]]. Research [4]] and [5] demonstrate specially
designed, innovative security solutions have the capacity to
transcend traditional approaches in detecting and mitigating
sophisticated network attacks in IoT infrastructures. This study
seeks to address this problem by investigating the use of
Shallow and Deep Feed Forward Neural Networks (FFNs) as
potential solutions to enhance the security of low-resourced
IoT application servers.

To address these challenges, this study examines the em-
ployability of simpler FFN models to gain insights into the
protection of low-resourced IoT application servers, particu-
larly within critical infrastructure. The subsequent sections of
this paper include a literature review on DL-based IoT attack
detection, followed by a methodology detailing the research
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steps. The paper then presents the results and discussion and,
finally concludes with key findings and future directions.

II. LITERATURE REVIEW

IoT application servers enable mission-critical data aggrega-
tion, communications, and service delivery. The rapid growth
of IoT in various sectors, from smart homes and healthcare
to critical infrastructure, and its sheer distribution have broad-
ened the IoT attack surface globally. This poses significant
risks to data security, privacy, business, and financial stability
and endangers human lives [5],[2]. Traditional security mea-
sures, such as intrusion detection systems (IDS) and firewalls,
lack the capabilities to address IoT vulnerabilities, network
complexities, and challenges with real-time monitoring of a
large number of devices. This necessitates robust and novel
approaches to security [6]. Research highlights the potential
of DL in protecting networks and servers. However, their re-
source requirements pose crucial challenges in low-resourced
IoT environments [3]].

A. Deep Learning Architecture

Deep Learning (DL) models consist of interconnected nodes
that allow information to flow from the input layer through
hidden layers to the output layer. Neurons receiving inputs
perform computations by applying an activation function to
the weighted sum of inputs and generate output signals for
the next layer. Through iterative processing, these models learn
from data by computing loss, updating weights, and ultimately
producing an output through prediction neurons [7]]. Many DL
models, such as Recurrent Neural Networks (RNNs), Long
Short-Term Memory (LSTM) networks, and Transformers,
have been effectively used in cybersecurity research [§]]. How-
ever they demand substantial processing power and memory.
In contrast, Feed Forward Neural Networks (FFNs) being the
simplest of DL models, have been successfully employed in
network attack detection in IoT environments [4]. FFNs allow
the design of Shallow and Deep models by varying the depth
(number of hidden layers) and breadth (number of neurons)
for different tasks, as shown in Figure 2.
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Fig. 2: Shallow and Deep Model Architectures[9].

Shallow FFN architecture reduces model complexity while
learning complex patterns, using a single hidden layer with a
higher number of neurons. However, it struggles with hierar-
chical representations in data. In contrast, Deep FFN archi-
tecture, which uses multiple hidden layers, offers enhanced
performance for handling complex problems. An increased
number of layers allows the model to capture intricate patterns
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and hierarchical representations in data. Nonetheless, their
computational complexity demands higher resources [9], [10].
Hyperparameter tuning is a crucial process that involves pre-
configuring important model settings before training. This
significantly influences the model architecture and the learning
process [11].

B. Related work

[12] systematically reviewed 69 studies focusing on DL
approaches to enhance security in IoT environments. They
analyze various attack types on IoT, DL architectures, and
datasets, highlighting notable DL applications. They also
provide a structured taxonomy highlighting research gaps
and drawbacks in employing DL models for IoT security. A
research gap identified in their study is the lack of discussion
on model biases arising from data imbalance. [[10] theoretically
compare Shallow and Deep architectures, arguing that Deep
models with multiple hidden layers can outperform Shallow
models in classification tasks. However, the study does not
consider factors such as resource usage and implementation
environment, as well as validation experiments necessary to
support their findings. [5] highlight the escalating security
challenges in the IoT landscape, outlining common threats
and the shortcomings of conventional security measures
in safeguarding resource-constrained IoT devices. They
underscore the potential for employing DL-based IoT security
solutions, comparing them with classical machine learning
approaches. However, the research falls short in providing
comparative results, including implementation challenges
between DL and classical machine learning methods in the
IoT security context.

[13]] utilized widely known KDD-Cup ’99, NSL-KDD,
and UNSW-NBI15 datasets for network attack direction.
Although the authors achieved a higher classification
accuracy with the UNSW-NBI15 dataset, they overlooked
data balancing and hyperparameter tuning. It significantly
influences the model bias and final model performance.
[8] conducted a comprehensive review of 143 studies on
DL approaches that address IoT security challenges. They
identified various security issues in IoT requirements and
examined DL approaches to address them, as well as
discussed various mechanisms in studies by comparing their
performances. Their review highlights the significant diversity
in security requirements across studies and sectors, reflecting
the concerns on the evolving landscape of IoT security that
require attention. However, the study lacks a focus on the
resource utilization of the proposed solutions. [14] compared
the efficacy of Shallow and Deep neural network architectures
to present distinct trade-offs in terms of model complexity,
performance, and computational efficiency. Consequently,
they state that employing them in the real world depends
on specific task requirements, data complexity, and available
computational resources. [15] highlight the challenges faced
by IDS/IPS mechanisms in protecting IoT networks that
process large volumes of information at faster speeds, as
well as the heterogeneity of devices, platforms, and security
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protocols.

[16] used FFNs and LSTM to create a hybrid model to
detect attacks on IoT servers employing both NSL-KDD
and BoT-IoT datasets achieving an accuracy of 99.95%.
However, combining the BoT-IoT dataset which focuses on
botnet detection and the NSL-KDD dataset which focuses
on intrusion detection requires extensive preprocessing due
to structural differences, complexities in addressing data
normalization, and class imbalances. The methodology for
merging these datasets remains unclear. [17] developed a
hybrid model combining RNN and GRU algorithms, using
the ToN-IoT dataset for attack classification. They achieved
a high accuracy of 98% at the application layer, surpassing
other DL approaches examined. However, while the RNN-
GRU hybrid enhances memory and temporal capabilities, it
also introduces increased model complexity and latency. This
necessitates meticulous hyperparameter tuning, particularly
for optimizing learning rates between RNNs and GRUs.
Moreover, the computational demands of the model may
pose challenges for low-resourced edge devices and could
potentially lead to overfitting.

C. Research Gap

120, [5], [8], and [15] underscore the limitations of
existing IoT network attack detection methods and propose
DL approaches. However, their studies often overlook crucial
steps in the Machine Learning (ML) pipeline essential for
model optimization, avoiding model bias, and performance
improvement. [13], acknowledge the significance of the
UNSW-NBI15 dataset employed in this study, however, they
do not effectively address the data imbalance problem in their
study.

[Ol], [LO], and [14]] delve into theoretical aspects of Shallow and
Deep models, but their studies lack practical experimentation
in employing them for IoT network attack detection. [16] did
not clarify how they merged the structurally different NSL-
KDD and BoT-IoT datasets, which complicates understanding
the preprocessing process and its implications for overall
performance. Despite achieving high accuracy with their
RNN-GRU hybrid model, [17] face challenges including
overfitting, increased model complexity, latency, and high
computational demands, especially for low-resourced edge
devices.

This study aims to bridge these gaps by systematically
building and investigating optimized Shallow and Deep DL
models to safeguard IoT application servers from network
attacks. The novelty of the research emerges from a structured
approach to design low-resource consuming FFN models
to meet limitations in IoT application servers in different
environments.

III. METHODOLOGY

This study follows the Machine Learning (ML) pipeline,
which is a sequence of interconnected steps designed to
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produce higher-quality DL models [18]. The research uses
a supervised learning approach to train, validate, and test
Shallow and Deep FFNs employing a labeled dataset to make
predictions on new inputs.

A. Data Preparation

1) Dataset: The study utilized a subset of the widely
known UNSW-NBI15 dataset. The subset was created through
random sampling [19]. This dataset was chosen due to
its significant relevance to the network attacks on IoT
servers addressed in the study. After cleaning and removing
categorical variables, we balanced the label feature using
random undersampling to avoid model bias toward the benign
class [20]. Reducing bias is an important ethical consideration
in DL tasks [21]. Ultimately, the dataset was reduced to
186,000 instances. It consisted of an equal number of attack
and benign samples.

2) Feature sets: The study created two input feature
sets for FFN model experimentation. The first input dataset
consisted of 20 significant features identified by [4] on the
same dataset. Reducing the feature set was aimed to decrease
model complexity to suit low-resource IoT environments. The
second input dataset consisted of 40 numerical features of
the dataset, focusing on high-resource IoT environments to
capture intricate relationships and hierarchical representations
in data.

3) Data Normalization: Subsequently, all features except
the label feature, were scaled using the min-max scaler tech-
nique, bringing features within a common range of 0 to 1.
Finally, the datasets were divided into training, testing, and
validation sets in a 90:5:5 ratio for model development [7].
This splitting strategy ensured allocating a substantial number
of samples for training and adequate samples for validation
and testing, creating a balance.

B. Model Development

The study designed two base FFN models. The Shallow
model consisted of a single hidden layer with 512 neurons.
It aimed to capture complex patterns and relationships within
data while maintaining simplicity and computational efficiency
as shown in Figure 3. The Deep model comprised 7 hidden
layers employing 256, 128, 64, 32, 16, 8, and 4 neurons
respectively. It allows hierarchical feature extraction to capture
intricate patterns and nuances in the data as shown in Figure

Fig. 3: Shallow and Deep base model designs
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Ultimately, the study created and trained four experimental
models by applying 20 and 40 feature datasets. They were
named Shallow20, Deep20, Shallow40, and Deep40 to estab-
lish benchmarks across different model configurations. The
models are illustrated in Figure 4.

UNSW-NBI15 Dataset

40 Numeric Features
20 Significant Features |

| Shallow20 | | Deep20 | | Shallow40 |

Fig. 4: Architectures of four experimental models.

The hyperparameter tuning process enhances model
performance by  exploring various  hyperparameter
combinations to select the optimal configuration for the
experimental model’s training. The study used Keras Tuner’s
random search algorithm using 50 trials. It used the training
set for hyperparameters tuning while using 20% of data for
internal validation to avoid overfitting [11]].

Subsequently, we trained the four experimental models
using their best hyperparameters, employing 20 and 40
feature training sets. The validation set was used for real-
time monitoring of potential overfitting. During training,
each model was saved at the epoch reaching the minimum
validation loss to control overfitting, and to enhance model
generalization [7]].

After developing the models on Google Colab using
Python, the study created four optimized executables using
Pylnstaller, and executed them in an isolated environment to
train, build, and test each model with the relevant dataset for
evaluating each model performance and resource usage [3].

C. Model Performance Evaluation

Each experimental model underwent a rigorous testing and
validation process to assess its effectiveness in generalizing to
new, unseen data. This unbiased evaluation was conducted to
select the best-performing model using performance metrics
derived from the confusion matrix, including accuracy, pre-
cision, recall, F1 score, and ROC-AUC curve. These metrics
collectively offer a comprehensive evaluation of each model’s
ability to generalize, detect patterns, and make accurate pre-
dictions in network attack classification tasks.

D. Assesing Resource Utilizationl

The resource utilization by models during training and
testing was evaluated by measuring the training and predic-
tion times, including their CPU and memory usage. This
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assessment was crucial for evaluating real-time model perfor-
mance and scalability in low-resourced IoT environments [3]].
Furthermore, analyzing the experimental model performance
metrics and resource usage helped in identifying areas for
model improvement and making informed decisions about
deploying them within low-resourced IoT environments to
protect application servers.

IV. RESULTS AND DISCUSSION

The four experimental models initially showed relatively
high accuracies. They further improved to a range of 0.94 to
0.98 after hyperparameter tuning, raising concerns of potential
overfitting. Hence, the training required close monitoring of
the minimum validation loss during training.

Table 1 shows the optimized model architectures after
hyperparameter tuning. In a comparison of model
complexities, the Shallow20 model has the fewest (11,265)
model parameters, followed by Deep20 (21,008), Shallow40
(49,313), and Deep40 (54,433) respectively.

TABLE I: Optimized architectures of models

Configuration Shallow20 | Shallow40 Deep20 Deep40
Model Parameters 11265 49313 21008 54433
Data Inputs 20 40 20 40
Hidden layers 1 1 7 7
Neurons per layer 512 512 256 to 4 256 to 4
activation_layer] Relu Tanh Tanh ReLU
activation_layer2 - - Tanh ReLU
activation_layer3 ReLU leaky_relu
activation_layer4 ReLU ReLU
activation_layer5 ReLU ReLU
activation_layer6 ReLU ReLU
activation_layer7 - - leaky_relu leaky_relu
optimizer Rmsprop Adam Adam Adam
learning_rate 0.001 0.001 0.001 0.001
weight_initializer he_normal | he_normal | he_normal | glorot_uniform
batch_size 256 64 8 16
Output function Sigmoid Sigmoid Sigmoid Sigmoid

A. Training of Final Models

Validation loss is a key metric used to evaluate the
performance of four models during training. It represents
the error between the predicted outputs of the model and
the actual outputs on the separate validation dataset used for
assessing model convergence during training [[L1].

The study monitored the changes in training accuracy
and validation loss of four models during the training process.
By setting the early stopping patience value to 50 epochs, the
study allowed the training to halt when the validation loss
was no longer improving.

Early stopping is a regularization technique used during
the training of neural network models. It helps prevent
overfitting, which occurs when a model learns not only the
underlying patterns in the training data but also the noise and
specific details that do not generalize well to new, unseen data.

Therefore, early stopping helps mitigate this problem
by halting the training process before the model starts to
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overfit [[11]. Figure 5 illustrates the change in validation loss
of four models during training.
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Fig. 5: Changes of Loss during Training.

Figure 6 illustrates the change in training accuracy of four
models during training.
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Fig. 6: Changes of Accuracy during Training.

B. Resource Utilization

The study aimed to optimize the models for performance
on ARM v8 64-bit SoC processors operating at 1.5GHz with
4GB of RAM or more, assuming these represent low-resource
environments. As shown in Table 4, the results demonstrated
significantly lower resource utilization compared to higher-
specification systems.

TABLE II: Key performance metrics of models

Performance Shallow20 | Shallow40 | Deep20 | Deep40
Training Time (S) 289 902 512 962
Validation Accuracy 0.93 0.94 0.97 0.98
End Epoch 10 61 39 68
Validation Loss 0.166 0.130 0.088 0.057
Prediction Time 0.55 0.56 0.57 0.59
Test Accuracy 0.93 0.94 0.97 0.98
Precision 0.94 0.96 0.97 0.98
Recall 0.92 0.92 0.97 0.98
F1 Score 0.93 0.94 0.97 0.98
ROC AUC Score 0.986 0.990 0.996 0.998
Average Precision 0.987 0.991 0.996 0.998
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C. Model Comparison

As shown in Table 4, the four experimental models
achieved relatively high accuracies between 0.93 and 0.98,
alongside high precision, recall, F1 score, and ROC AUC
scores, indicating their strong predictive capabilities. Among
them, the Deep40 model demonstrated superior performance
across multiple metrics, achieving the highest test accuracy of
0.98, validation accuracy of 0.98, precision of 0.981, F1 score
of 0.98, ROC AUC score of 0.998, and average precision of
0.998, while recording the minimum validation loss of 0.057.

Hence, the Deep40 model consistently outperformed the
other models, indicating its robustness in making accurate
predictions and its exceptional ability to generalize to
unseen data. Exhibiting the highest number of true positives
(4572) and true negatives (4537), the Deep40 model further
demonstrates its effectiveness in correctly classifying both
positive and negative instances. Moreover, exhibiting the
lowest number of false positives (78) and false negatives
(113) showcases its accuracy in making predictions with high
sensitivity and specificity.

D. Resource Utilization

The Shallow20 model with simpler architecture and lower
computational complexity, achieved faster training time. This
factor is insignificant if the model training time is not a
critical factor for the task. The difference in prediction times
between the Shallow20 (0.55 seconds) and the Deep40 (0.59
seconds) model may appear small. However, even minor
differences can be significant in real-time circumstances
where predictions are made continuously or in batches in
low-resourced IoT environments.

TABLE III: Key performance metrics of models

Performance Data Shallow20 | Shallow40 | Deep20 | Deep40
Model Size (KB) 110 190 648 708

Prediction Time (s) 0.55 0.56 0.57 0.59
CPU Usage (%) 0.25 0.26 0.30 0.32
Memory Usage (GB) 0.016 0.017 0.019 0.021

As shown in Table 4, the single-layer Shallow20 model
exhibited the lowest CPU and memory usage compared
to deep models with multiple layers and more parameters.
The Shallow20 model requires less RAM for storing and
processing model parameters and intermediate computations,
contributing to their lower memory consumption. During
model inference, the Shallow20 model offers advantages
for deployment in resource-constrained environments
and time-sensitive real-time IoT applications, where timely
responses are necessary to mitigate security threats effectively.

The Deep40 model exhibits superior performance and better
overall model quality, particularly effective for classification
tasks in well-resourced IoT servers. By recognizing these
differences and trade-offs, researchers and practitioners can
make informed decisions regarding model selection and
deployment strategies for enhancing security mechanisms for
IoT application servers.
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V. CONCLUSION

This research focused on enhancing IoT application server
security using Shallow and Deep FFN models employing two
datasets followed by a systematic approach involving iterative
improvements. The investigation revealed that despite the
higher computational demands, the Deep40 FFN model using
a 40 features dataset demonstrated superior accuracy and
discriminative capabilities for detecting network attacks on
IoT application servers.

Conversely, the Shallow20 model which uses 20 significant
features, performed with lower resource requirements with
slightly lower accuracy. Hence, it remained suitable for low-
resource [oT environments demanding low-latency trading-off
accuracy. Furthermore, the analysis showed the significance of
feature selection, data balancing, and hyperparameter tuning
for optimizing model performance. In conclusion, the study
underscores the practical implications of employing varied
FFN architectures to enhance low-resourced IoT applications
server security.

Finally, the choice between Shallow and Deep FFN models
depends on specific application requirements, considering
trade-offs in computational resources and model complexity,
inference speed, interpretability, scalability, and cost. This
research significantly advances low-resourced IoT application
security by demonstrating the effectiveness of Shallow and
Deep FFN architectures. It proposes a novel and practical
deployment strategy by integrating the Deep40 model into
next-generation firewall systems to protect higher-value
IoT servers and suggesting future directions for exploring
Shallow-Deep hybrid FFN models in defending edge servers,
in low-resourced IoT environments.
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